[Tex/LaTex] Big Brackets inside eqnarray

bracketsequationsmath-mode

Can anyone help me in writing the following long expression with in IEEEeqnarray or eqnarray structure?

\documentclass[10pt,a4paper]{article}
\pagestyle{plain}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{bm}
\usepackage{IEEEtrantools}
\begin{document}
\begin{IEEEeqnarray*}{rCl}
\Sigma^{*}(\hat{\bm{\beta}}^{S+})&=&E\left[\lim_{n\rightarrow\infty}\sqrt{n}(\hat{\bm{\beta}}^{S+}-\bm{\beta})\sqrt{n}(\hat{\bm{\beta}}^{S+}-\bm{\beta})^{'}\right]\\
&=&E\left[\lim_{n\rightarrow\infty}\sqrt{n}\left\{\hat{\bm{\beta}}^{S}-\left(1-(p_{2}-2)D^{-1}_{n}\right)I(D_{2}<p_{2}-2)(\hat{\bm{\beta}}-\tilde{\bm{\beta}})-\bm{\beta}\right\}\right]\\
&& \times \>
\end{IEEEeqnarray*}
\end{document}


Best Answer

This should let you start.

Use the aligned environment to get the equation split in two lines.

MWE

\documentclass[10pt,a4paper]{article}
\pagestyle{plain}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{bm}
\usepackage{IEEEtrantools}
\begin{document}
\begin{IEEEeqnarray*}{rCl}
\Sigma^{*}(\hat{\bm{\beta}}^{S+})&=
&E\left[\lim_{n\rightarrow\infty}\sqrt{n}(\hat{\bm{\beta}}^{S+}-\bm{\beta})\sqrt{n}
(\hat{\bm{\beta}}^{S+}-\bm{\beta})^{'}\right]\\
&=&E\left[\lim_{n\rightarrow\infty}\left\{
\begin{aligned}
&\sqrt{n}\left\{\hat{\bm{\beta}}^{S}-\left(1-(p_{2}-2)D^{-1}_{n}\right)I(D_{2}<p_{2}-2)
(\hat{\bm{\beta}}-\tilde{\bm{\beta}})-\bm{\beta}\right\}\\
&\times\sqrt{n}\left\{\hat{\bm{\beta}}^{S}-\left(1-(p_{2}-2)D^{-1}_{n}\right)I(D_{2}<p_{2}-2)
(\hat{\bm{\beta}}-\tilde{\bm{\beta}})-\bm{\beta}\right\}'
\end{aligned}\right\}\right]
\end{IEEEeqnarray*}
\end{document}


EDIT

Since your request of making two consecutive lines, here it is, but notice that I've simply copied the previous one, not certainly typeset the formula in the image.... Replace that with your equation.

\documentclass[10pt,a4paper]{article}
\pagestyle{plain}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{bm}
\usepackage{IEEEtrantools}
\begin{document}
\begin{IEEEeqnarray*}{rCl}
\Sigma^{*}(\hat{\bm{\beta}}^{S+})&=
&E\left[\lim_{n\rightarrow\infty}\sqrt{n}(\hat{\bm{\beta}}^{S+}-\bm{\beta})\sqrt{n}
(\hat{\bm{\beta}}^{S+}-\bm{\beta})^{'}\right]\\
&=&E\left[\lim_{n\rightarrow\infty}\left\{
\begin{aligned}
&\sqrt{n}\left\{\hat{\bm{\beta}}^{S}-\left(1-(p_{2}-2)D^{-1}_{n}\right)I(D_{2}<p_{2}-2)
(\hat{\bm{\beta}}-\tilde{\bm{\beta}})-\bm{\beta}\right\}\\
&\times\sqrt{n}\left\{\hat{\bm{\beta}}^{S}-\left(1-(p_{2}-2)D^{-1}_{n}\right)I(D_{2}<p_{2}-2)
(\hat{\bm{\beta}}-\tilde{\bm{\beta}})-\bm{\beta}\right\}'
\end{aligned}\right\}\right]\\
&=&E\left[\lim_{n\rightarrow\infty}\left\{
\begin{aligned}
&\sqrt{n}\left\{\hat{\bm{\beta}}^{S}-\left(1-(p_{2}-2)D^{-1}_{n}\right)I(D_{2}<p_{2}-2)
(\hat{\bm{\beta}}-\tilde{\bm{\beta}})-\bm{\beta}\right\}\\
&\times\sqrt{n}\left\{\hat{\bm{\beta}}^{S}-\left(1-(p_{2}-2)D^{-1}_{n}\right)I(D_{2}<p_{2}-2)
(\hat{\bm{\beta}}-\tilde{\bm{\beta}})-\bm{\beta}\right\}'
\end{aligned}\right\}\right]
\end{IEEEeqnarray*}
\end{document}