[Math] Prove $\int_0^{\infty}\! \frac{\mathbb{d}x}{1+x^n}=\frac{\pi}{n \sin\frac{\pi}{n}}$ using real analysis techniques only

calculusdefinite integralsimproper-integralsintegrationreal-analysis

I have found a proof using complex analysis techniques (contour integral, residue theorem, etc.) that shows $$\int_0^{\infty}\! \frac{\mathbb{d}x}{1+x^n}=\frac{\pi}{n \sin\frac{\pi}{n}}$$ for $n\in \mathbb{N}^+\setminus\{1\}$

I wonder if it is possible by using only real analysis to demonstrate this "innocent" result?

Edit
A more general result showing that
$$\int\limits_{0}^{\infty} \frac{x^{a-1}}{1+x^{b}} \ \text{dx} = \frac{\pi}{b \sin(\pi{a}/b)}, \qquad 0 < a <b$$
can be found in another math.SE post

Best Answer

$$ \int_{0}^{\infty}\frac{1}{1+x^n}\ dx =\int_{0}^{\infty}\int_{0}^{\infty}e^{-(1+x^{n})t}\ dt\ dx $$

$$ =\int_{0}^{\infty}\int_{0}^{\infty}e^{-t}e^{-tx^{n}}\ dx\ dt =\frac{1}{n}\int_{0}^{\infty}\int_{0}^{\infty}e^{-t}e^{-u}\Big(\frac{u}{t}\Big)^{\frac{1}{n}-1}\frac{1}{t}\ du\ dt $$

$$ =\frac{1}{n}\int_{0}^{\infty}t^{-\frac{1}{n}}e^{-t}\int_{0}^{\infty}u^{\frac{1}{n}-1}e^{-u}\ du\ dt =\frac{1}{n}\int_{0}^{\infty}t^{-\frac{1}{n}}e^{-t}\ \Gamma\Big(\frac{1}{n}\Big)\ dt $$

$$ =\frac{1}{n}\ \Gamma\Big( 1-\frac{1}{n}\Big)\Gamma\Big(\frac{1}{n}\Big) =\frac{\pi}{n}\csc\Big(\frac{\pi}{n}\Big) $$

Related Question