Real Analysis – Evaluating ?0^? sin(x^2) dx with Real Methods

integrationreal-analysistrigonometry

I have seen the Fresnel integral

$$\int_0^\infty \sin x^2\, dx = \sqrt{\frac{\pi}{8}}$$

evaluated by contour integration and other complex analysis methods, and I have found these methods to be the standard way to evaluate this integral. I was wondering, however, does anyone know a real analysis method to evaluate this integral?

Best Answer

Aside from some trigonometric substitutions and identities, we will need the following identity, which can be shown using integration by parts twice: $$ \int_0^{\infty}\cos(\alpha t)e^{-\lambda t}\,\mathrm{d}t=\frac{\lambda}{\alpha^2+\lambda^2}\tag{1} $$ We will also use the standard arctangent integral: $$ \int_0^\infty\frac{\mathrm{d}t}{a^2+t^2}=\frac\pi{2a}\tag{2} $$ Now $$ \begin{align} &\left(\int_0^\infty\color{#C00000}{\sin}(x^2) e^{-\lambda x^2}\,\mathrm{d}x\right)^2\\ &=\int_0^\infty\int_0^\infty \color{#C00000}{\sin}(x^2)\color{#C00000}{\sin}(y^2) e^{-\lambda(x^2+y^2)}\,\mathrm{d}y\,\mathrm{d}x\tag{3.1}\\ &=\frac12\int_0^\infty\int_0^\infty \left(\cos(x^2-y^2) \color{#FF0000}{-}\cos(x^2+y^2)\right) e^{-\lambda(x^2+y^2)}\,\mathrm{d}y\,\mathrm{d}x\tag{3.2}\\ &=\frac12\int_0^{\pi/2}\int_0^\infty \left(\cos(r^2\cos(2\phi)) \color{#FF0000}{-}\cos(r^2)\right)e^{-\lambda r^2} \,r\,\mathrm{d}r\,\mathrm{d}\phi\tag{3.3}\\ &=\frac14\int_0^{\pi/2}\int_0^\infty \left(\cos(s\cos(2\phi)) \color{#FF0000}{-}\cos(s)\right) e^{-\lambda s} \,\mathrm{d}s\,\mathrm{d}\phi\tag{3.4}\\ &=\frac14\int_0^{\pi/2}\left(\frac{\lambda}{\cos^2(2\phi)+\lambda^2} \color{#FF0000}{-}\frac{\lambda}{1+\lambda^2}\right)\,\mathrm{d}\phi\tag{3.5}\\ &=\frac12\int_0^{\pi/4} \frac{\lambda}{\cos^2(2\phi)+\lambda^2}\,\mathrm{d}\phi \color{#FF0000}{-}\frac{\lambda\pi/8}{1+\lambda^2}\tag{3.6}\\ &=\frac14\int_0^{\pi/4} \frac{\lambda\,\mathrm{d}\tan(2\phi)} {1+\lambda^2+\lambda^2\tan^2(2\phi)} \color{#FF0000}{-}\frac{\lambda\pi/8}{1+\lambda^2}\tag{3.7}\\ &=\frac14\int_0^\infty\frac{\mathrm{d}t}{1+\lambda^2+t^2} \color{#FF0000}{-}\frac{\lambda\pi/8}{1+\lambda^2}\tag{3.8}\\ &=\frac{\pi/8}{\sqrt{1+\lambda^2}} \color{#FF0000}{-}\frac{\lambda\pi/8}{1+\lambda^2}\tag{3.9} \end{align} $$

$(3.1)$ change the square of the integral into a double integral

$(3.2)$ use $2\color{#C00000}{\sin}(A)\color{#C00000}{\sin}(B)=\cos(A-B)\color{#FF0000}{-}\cos(A+B)$

$(3.3)$ convert to polar coordinates

$(3.4)$ substitute $s=r^2$

$(3.5)$ apply $(1)$

$(3.6)$ pull out the constant and apply symmetry to reduce the domain of integration

$(3.7)$ multiply numerator and denominator by $\sec^2(2\phi)$

$(3.8)$ substitute $t=\lambda\tan(2\phi)$

$(3.9)$ apply $(2)$

Finally, take the square root of both sides of $(3)$ and let $\lambda\to0^+$ to get $$ \int_0^\infty\color{#C00000}{\sin}(x^2)\,\mathrm{d}x=\sqrt{\frac\pi8}\tag{4} $$

Addendum

I just noticed that the same proof works for $$ \int_0^\infty\cos(x^2)\,\mathrm{d}x=\sqrt{\frac\pi8}\tag{5} $$ if each red $\color{#C00000}{\sin}$ is changed to $\cos$ and each red $\color{#FF0000}{-}$ sign is changed to $+$.

Related Question