[Math] Prove $\int_0^1 \frac{t^2-1}{(t^2+1)\log t}dt = 2\log\left( \frac{2\Gamma \left( \frac{5}{4}\right)}{\Gamma\left( \frac{3}{4}\right)}\right)$

calculusdefinite integralsintegration

I am trying to prove that

$$\int_0^1 \frac{t^2-1}{(t^2+1)\log t}dt = 2\log\left( \frac{2\Gamma \left( \frac{5}{4}\right)}{\Gamma\left( \frac{3}{4}\right)}\right)$$

I know how to deal with integrals involving cyclotomic polynomials and nested logarithms but I have no idea with this one.

Best Answer

Let's introduce the parameter $\alpha$, and then differentiate with respect to $\alpha$ that yields $$I(\alpha)=\int_0^1 \frac{t^\alpha-1}{(t^2+1)\ln t}dt $$ $$I'(\alpha)=\int_0^1 \frac{t^{\alpha}}{(t^2+1)}dt=\frac{1}{4} \left(-\psi_0\left(\frac{1 + \alpha}{4}\right) + \psi_0\left(\frac{3 + \alpha}{4}\right)\right) $$ Then $$I(\alpha)=\frac{1}{4} \int\left(-\psi_0\left(\frac{1 + \alpha}{4}\right) + \psi_0\left(\frac{3 + \alpha}{4}\right)\right) d\alpha= $$ $$I(\alpha)=\left(\ln \Gamma \left(\frac{3 + \alpha}{4}\right)- \ln \Gamma \left(\frac{1 + \alpha}{4}\right)\right)+C\tag1$$ If letting $\alpha=2$, then $$I(2)=\ln \left(\frac{\Gamma \left(\frac{5}{4}\right)}{\Gamma \left(\frac{3}{4}\right)}\right)+C$$ On the other hand, by letting $\alpha=0$ in $(1)$ we get $$C=\ln \left(\frac{\Gamma \left(\frac{1}{4}\right)}{\Gamma \left(\frac{3}{4}\right)}\right)$$ Thus $$\int_0^1 \frac{t^2-1}{(t^2+1)\ln t}dt=\ln \left(\frac{\Gamma \left(\frac{5}{4}\right)\Gamma \left(\frac{1}{4}\right)}{\Gamma^2 \left(\frac{3}{4}\right)}\right) $$