[Math] Integral $\int_0^{\infty} \frac{\log x}{\cosh^2x} \ \mathrm{d}x = \log\frac {\pi}4- \gamma$

calculuscontour-integrationdefinite integralsintegration

Inspired by the user @Integrals, I thought I'd find some nice integrals! Especially interesting are those involving $\log \pi$. From Borwein and Devlin's "The Computer as Crucible", pg. 58 – show that

$$\displaystyle \int_0^{\infty} \frac{\log x}{\cosh^2x} \ \mathrm{d}x = \log\frac {\pi}4 – \gamma,$$

where $\gamma$ is the Euler-Mascheroni constant.

Best Answer

Let the considered integral be denoted by $I$. We have $$\eqalign{I&=\int_0^{1}\frac{\ln x}{\cosh^2x}dx+\int_{1}^\infty\frac{\ln x}{\cosh^2x}dx\cr &=\Big[(\ln x)\tanh x \Big]_0^1-\int_0^1\frac{\tanh x}{x}dx+ \Big[(\ln x)(\tanh x-1) \Big]_1^\infty-\int_1^\infty\frac{\tanh x-1}{x}dx\cr &=2\int_1^\infty\frac{dx}{x(1+e^{2x})}-\int_0^1\frac{1-e^{-2x}}{x(1+e^{-2x})}dx\cr &=2\int_1^\infty\frac{dx}{x(1+e^{2x})}-\int_0^1\frac{1-e^{-2x}}{x}\left(\frac{1}{1+e^{-2x}}-1\right)dx- \int_0^1\frac{1-e^{-2x}}{x}dx\cr &=2\int_1^\infty\frac{dx}{x(1+e^{2x})}+\int_0^1\frac{e^{-2x}-e^{-4x}}{x(1+e^{-2x})}dx- \int_0^1\frac{1-e^{-2x}}{x}dx\cr &=2\int_1^\infty\frac{dx}{x(1+e^{2x})}-\int_1^\infty\frac{e^{-2x}-e^{-4x}}{x(1+e^{-2x})}dx+\int_0^\infty\frac{e^{-2x}-e^{-4x}}{x(1+e^{-2x})}dx- \int_0^1\frac{1-e^{-2x}}{x}dx\cr &=\int_1^\infty\frac{1+e^{-2x}}{x(1+e^{2x})}dx+\int_0^\infty\frac{e^{-2x}-e^{-4x}}{x(1+e^{-2x})}dx- \int_0^1\frac{1-e^{-2x}}{x}dx\cr &=\int_1^\infty\frac{e^{-2x}}{x}dx- \int_0^1\frac{1-e^{-2x}}{x}dx+\int_0^\infty\frac{e^{-2x}-e^{-4x}}{x(1+e^{-2x})}dx\cr &=\underbrace{\int_2^\infty\frac{e^{-t}}{t}dt- \int_0^2\frac{1-e^{-t}}{t}dt}_A+\underbrace{\int_0^\infty\frac{e^{-t}-e^{-2t}}{t(1+e^{-t})}dt}_B} $$ Now, note that $$\eqalign{ A&=\int_2^\infty\frac{e^{-t}}{t}dt-\int_0^1\frac{1-e^{-t}}{t}dt- \int_1^2\frac{1-e^{-t}}{t}dt\cr &=\int_2^\infty\frac{e^{-t}}{t}dt-\int_0^1\frac{1-e^{-t}}{t}dt-\ln2 +\int_1^2\frac{e^{-t}}{t}dt\cr &=\int_1^\infty\frac{e^{-t}}{t}dt-\int_0^1\frac{1-e^{-t}}{t}dt-\ln2\cr &=-\gamma-\ln2 } $$ To calculate $B$ we can do the following $$\eqalign{ B&=\int_0^\infty\frac{e^{-t}-e^{-2t}}{t}\left(\sum_{n=0}^\infty(-1)^ne^{-nt}\right)dt\cr &=\sum_{n=0}^\infty(-1)^n\int_0^\infty\frac{e^{-(n+1)t}-e^{-(n+2)t}}{t}dt\cr &=\sum_{n=0}^\infty(-1)^n\ln\left(\frac{n+2}{n+1}\right)\cr &=\lim_{m\to\infty}\sum_{n=0}^{2m-2}(-1)^n\ln\left(\frac{n+2}{n+1}\right)\cr &=\lim_{m\to\infty}\ln\left(\prod_{k=1}^m\frac{2k}{2k-1}\prod_{k=1}^{m-1}\frac{2k}{2k+1}\right)\cr &=\lim_{m\to\infty}\ln\left(\frac{(2m)!!(2m-2)!!}{((2m-1)!!)^2}\right)=\ln\left(\frac{\pi}{2}\right)\cr } $$ By Stirling's formula. This yields $I=\ln \pi-2\ln 2-\gamma$. $\qquad\square$

Related Question