[Math] Length of Latus Rectum for a General Parabola

conic sections

This is an extension my earlier questions here and here on parabolas.

Find the length of the Latus Rectum of the General Parabola
$$(Ax+Cy)^2+Dx+Ey+F=0$$

Best Answer

$$(Ax+Cy)^2+Dx+Ey+F=0\qquad\cdots (1)$$ Put $u=Ax+Cy, v=Cx-Ay$ and solving for $x,y$ and putting $K=A^2+C^2$ gives $$y=\frac {Cu-Av}{K}; \qquad x=\frac {Au+Cv}{K}\qquad\cdots (2)$$ From $(1),(2)$,

$$\begin{align} u^2+D\left(\frac {Au+Cv}{K}\right)+E\left(\frac{Cu-Av}{K}\right)+F&=0\\ \left(u+\frac {AD+CE}{2K}\right)^2&=\frac{AE-CD}{K}\bigg\lbrace v+\frac{K}{AE-CD}\left[\left(\frac{AD+CE}{2K}\right)^2-F\right]\bigg\rbrace\\ \text{Dividing by }\sqrt{K}\cdot \sqrt{K} \text{ to normalize }u,v \hspace{1cm} \\ \text{and putting }M=AE-CD,\hspace{1cm}\\ {\underbrace{\left(\frac u{\sqrt{K}}+\frac {AD+CE}{2K\sqrt{K}}\right)}_U}^2&=\underbrace{\frac{M}{K\sqrt{K}}}_{4\alpha}\underbrace{\bigg\lbrace \frac v{\sqrt{K}}+\frac{K}{M\sqrt{K}}\left[\left(\frac{AD+CE}{2K}\right)^2-F\right]\bigg\rbrace}_V\\ U^2&=4\alpha V\\ \text{Length of Latus Rectum } = |4\alpha |&=\bigg|\frac M{\;\;K^{\frac 32}}\bigg|=\color{red}{\frac {\big|AE-CD\big|}{\;\;\big(A^2+C^2\big)^{\frac 32}}} \end{align}$$