Evaluate $\int_0^{\infty} \frac{\cos{x}}{1+x^4} dx$ without contour integration

integration

Using contour integration I found that
$\int_0^{\infty} \frac{\cos{m x}}{1+x^4} dx = \frac{\pi}{2\sqrt{2}} e^{-\frac{|m|}{\sqrt{2}}} (\cos\frac{m}{\sqrt{2}} + \sin\frac{|m|}{\sqrt{2}})$

Is there any way to evaluate the integral using the differentiation under the integral sign, or any other technique that does not require contour integrals?

Best Answer

Let $I(a) = \int_0^\infty \frac{\sin at} {t(t^2+1)}dt $, which satisfies $$I(a)-I’’(a) = \int_0^\infty \frac{\sin at}t dt= \frac\pi2$$ and hence has the solution $I(a) = \frac\pi2 (1-e^{-a}) $. Then

\begin{align} \int_{0}^{\infty}\frac{\cos mx}{x^4+1} dx = &\ \frac1{4\sqrt2}\int_{-\infty}^{\infty} \overset{x=\frac{t-1}{\sqrt2}}{\frac{(\sqrt2+x)\cos mx}{x^2+\sqrt2x+1}} +\overset{x= \frac{t+1}{\sqrt2 }}{\frac{(\sqrt2-x)\cos mx}{x^2-\sqrt2x+1}} \ d x\\ =& \ \frac1{\sqrt2}\int_{0}^{\infty} \frac{\cos \frac {mt }{\sqrt2} \cos\frac m{\sqrt2}}{t^2+1} + \frac{t\sin\frac {|m|t}{\sqrt2} \sin\frac {|m|}{\sqrt2}}{t^2+1}\ dt \\ =& \ \frac1{\sqrt2}\cos\frac{m}{\sqrt2}\cdot I’(\frac {m}{\sqrt2}) -\frac1{\sqrt2}\sin\frac{|m|}{\sqrt2}\cdot I’’(\frac {|m|}{\sqrt2})\\ = &\ \frac{\pi}{2\sqrt{2}}e^{-\frac{|m|}{\sqrt{2}}}\left(\cos\frac{m}{\sqrt{2}}+\sin\frac{|m|}{\sqrt{2}}\right) \end{align}