Geometry – Calculating Distance from a Tangent Point on an Ellipse to the Center

conic sectionsgeometry

In the following figure, the line that touches the ellipse at only one point, called A, is the tangent line to the ellipse at that point. C is the center of the ellipse. Point $L'$ is the point where the perpendicular passing through C to the tangent line intersects the tangent line. Point L, instead, is the intersection between this perpendicular and the ellipse.

enter image description here

I know that the ratio $\frac{AL'}{L'C}$ is given. I would like to calculate the length of $AC$. I thought I could calculate $L'C$ (and then $AC$) using question Distance point on ellipse to centre; however, by doing so, I can only calculate $LC$. Any suggestions?

Best Answer

We may suppose that the equation of the ellipse is $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ with $A(a\cos t,b\sin t)$ and $C(0,0)$.

Then, the equation of the line $AL'$ is given by $ \frac{x\cos t}{a}+\frac{y\sin t}{b}=1$. So, we can write $L'(c,\frac{ab-bc\cos t}{a\sin t})$. Since $CL'$ is perpendicular to $AL'$, solving $$\frac{ab-bc\cos t}{ac\sin t}\times \frac{-b\cos t}{a\sin t}=-1$$ for $c$ gives $c=\frac{ab^2\cos t}{a^2\sin^2t+b^2\cos^2t}$. So, we have $L'(\frac{ab^2\cos t}{a^2\sin^2t+b^2\cos^2t},\frac{a^2b\sin t}{a^2\sin^2t+b^2\cos^2t})$.

Since $L$ is on the line segment $CL'$, we can write $L(L'_xd,L'_yd)$ where $0\lt d\lt 1$.

Since $L$ is on the ellipse, solving $\frac{(L'_xd)^2}{a^2}+\frac{(L'_yd)^2}{b^2}=1$ for $d$ gives $d=\frac{a^2\sin^2t+b^2\cos^2t}{\sqrt{a^4\sin^2t+b^4\cos^2t}}$.

So, we have $L(\frac{ab^2\cos t}{\sqrt{a^4\sin^2t+b^4\cos^2t}},\frac{a^2b\sin t}{\sqrt{a^4\sin^2t+b^4\cos^2t}})$, and so $$AL'=\frac{|(a^2-b^2)\cos t\sin t|}{\sqrt{a^2\sin^2t+b^2\cos^2t}}$$ $$L'C=\frac{ab}{\sqrt{a^2\sin^2t+b^2\cos^2t}}$$

Now, if we know $r:=\frac{AL'}{L'C}$, then we have $r=\frac{|a^2-b^2|}{ab}|\cos t\sin t|=\frac{|a^2-b^2|}{2ab}|\sin(2t)|$ which implies $$|\sin(2t)|=\frac{2abr}{|a^2-b^2|}$$ $$1-\cos^2(2t)=\frac{4a^2b^2r^2}{(a^2-b^2)^2}$$ $$\cos^2(2t)=1-\frac{4a^2b^2r^2}{(a^2-b^2)^2}$$ $$\cos(2t)=\pm\sqrt{1-\frac{4a^2b^2r^2}{(a^2-b^2)^2}}$$

We can represent $AC$ by $\cos(2t)$ as follows : $$\begin{align}AC&=\sqrt{a^2\cos^2t+b^2\sin^2t} \\\\&=\sqrt{a^2\cos^2 t+b^2(1-\cos^2t)} \\\\&=\sqrt{b^2+(a^2-b^2)\cos^2t} \\\\&=\sqrt{b^2+(a^2-b^2)\frac{1+\cos(2t)}{2}} \\\\&=\sqrt{\frac{a^2+b^2}{2}+\frac{a^2-b^2}2\cos(2t)}\end{align}$$

Therefore, we finally get $$\color{red}{AC=\sqrt{\frac{a^2+b^2}{2}\pm \frac{a^2-b^2}2\sqrt{1-\frac{4a^2b^2}{(a^2-b^2)^2}\bigg(\frac{AL'}{L'C}\bigg)^2}}}$$