[Math] Foci of ellipse and distance c from center question

conic sectionsgeometry

I don't understand how you would figure out an exact formula for the linear eccentricity (distance from the center to either focus) $c$ of an ellipse, being $c^2=a^2-b^2$, where $a$ is the length of the semi-major axis and $b$ the length of the semi-minor axis. I am imagining someone defining an ellipse as a shape where you have two foci and every point on this shape will have the same sum of distances from the foci. Now, how would you find out that every time for this shape, the $c^2=a^2-b^2$?

Best Answer

As you know, the foci of an ellipse whose equation is $$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$are described, if $a^2>b^2$, by the coordinates $(c,0)$ and $(-c,0)$ where $c=\sqrt{a^2-b^2}$. In fact the sum of the distances of a generical point $(x,y)$ from $(c,0)$ and $(-c,0)$ is, as we can see by using the Pythagorean theorem, $$\sqrt{(x-c)^2+(y-0)^2}+\sqrt{(x-(-c))^2+(y-0)^2}$$which we can prove to be the constant $2a$ (assuming $a>0$). In fact, if we plug $c=\sqrt{a^2-b^2}$ into the equation of the ellipse, it becomes $$\frac{x^2}{a^2}+\frac{y^2}{a^2-c^2}=1$$which is equivalent to $$(a^2-c^2)x^2+a^2y^2=a^2(a^2-c^2)$$which is in turn equivalent, as we can see by adding $-2a^2cx$ to both members and rearranging the addends, to $$a^2((x-c)^2+y^2)=a^2(x^2-2cx+c^2+y^2)=a^4-2a^2cx+c^2x^2=(a^2-cx)^2$$which becomes, if we calculate the square root of both members and multiplicate by $4$ $$\pm 4a\sqrt{(x-c)^2+y^2}=4(a^2-cx)$$ but, since $c=\sqrt{a^2-b^2}<a$ and $\frac{x^2}{a^2}\le 1$ (see equation of the ellipse: $\frac{y^2}{b^2}\ge 0$) and therefore, for $x>0$, $cx\le ax\le a^2$, we can chose the sign + in front of the square root:$$0=4(a^2-cx)-4a\sqrt{(x-c)^2+y^2}$$which is in turn equivalent, as we notice if we add $x^2+2cx+c^2+y^2$ to both members, to $$(x+c)^2+y^2=4a^2+(x-c)^2+y^2-4a\sqrt{(x-c)^2+y^2}=\left(2a-\sqrt{(x-c)^2+y^2}\right)^2$$which is finally equivalent, in turn, as we see by calculating the square root of both memebrs, to$$\sqrt{(x+c)^2+y^2}=2a-\sqrt{(x-c)^2+y^2}$$where we chose the positive sign for the square root $\sqrt{(x+c)^2+y^2}$ because $2a-\sqrt{(x-c)^2+y^2}\ge 0$, in fact if $2a<\sqrt{(x-c)^2+y^2}$ then $4a^2<(x-c)^2+y^2$ and $3a^2<x^2+y^2-cx-b^2$ which is impossible because if $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ and $a^2>b^2$ then $\frac{x^2+y^3}{a^2}<1$. The last equality means that the sum of the distances of any point from $(c,0)$ and $(-c,0)$ is $2a$, as we wanted to show.

If $b^2>a^2$ the roles of $x$ and $y$ are inverted and therefore the foci are $(0,\sqrt{b^2-a^2})$ and $(0,-\sqrt{b^2-a^2})$.

Related Question