A tricky integral using Fourier Transform and Dirac-functions

definite integralsdirac deltafourier transformintegration

I need to calculate the following integral:
$$
\boxed{I= \int_{0^+}^{t} \int_0^\infty f'(t')\, \omega^2 \cos(\omega(t'-t))\, d\omega\, dt'}
$$

where $t>0$, $t' \in (0,t]$ and $f'(x)$ is the derivative of the function $f$.

My attempt:
First I define

$$
A= \int_0^\infty \omega^2\cos(\omega \, a) \, d\omega
$$

using the fact that $\omega^2\cos(\omega \, a)$ is even in $\omega$,
$$
A= \frac{1}{2} \int_{-\infty}^{\infty} \omega^2\cos(\omega \, a) d\omega
$$

expressing the cosine as a sum of exponentials,
$$
A= \frac{1}{4}\int_{-\infty}^{\infty} \omega^2 \left[ e^{-i \omega (-a)}+e^{-i \omega a}\right] d\omega
$$

The Fourier transform of a polynomial is given in: https://en.wikipedia.org/wiki/Fourier_transform#Distributions,_one-dimensional

$$
\int_{-\infty}^{\infty} x^n e^{-i \nu x} dx = 2 \pi i^n \delta^{(n)}(x)
$$

where $\delta^{(n)}(x)$ is the n-th derivative of the Dirac-delta distribution.

Therefore,
$$
A= – \frac{\pi}{2} \left[ \delta^{(2)}(-a) + \delta^{(2)}(a)\right].
$$

In this page: https://mathworld.wolfram.com/DeltaFunction.html we can check equation (17), which states that $x^n \delta^{(n)}(x)= (-1)^n n! \delta(x)$, which we can use to deduce that $\delta^{(2)}(x)$ is "even". We conclude that

$$
A= \int_0^\infty \omega^2\cos(\omega \, a) \, d\omega = – \pi \delta^{(2)}(a).
$$

Using this result in $I$,
$$
I= – \pi \int_{(0^+,t]} f'(t') \delta^{(2)}(t'-t) dt'
$$

after this, I am stuck, I am supposed to prove that
$$
I= -\pi \left[ – f''(t) \delta(0) + \frac{1}{2} f'''(t)\right]
$$

but can not figure how.

Thank you for reading 🙂

Best Answer

Note that we have

$$\omega^2 \cos(\omega(t'-t))=-\frac{d^2\cos(\omega(t'-t))}{dt'^2}=-\frac{d^2\cos(\omega(t'-t))}{dt^2}$$

Under the assumption that $f(t)$ is a suitable test function, we have in distribution for $t>0$

$$\begin{align} F^+(t)&=\lim_{\varepsilon\to0^+}\int_0^{t+\varepsilon} \int_0^\infty f'(t')\omega^2 \cos(\omega(t'-t))\,d\omega\,dt'\\\\ &=-\frac12\lim_{\varepsilon\to0^+}\int_0^{t+\varepsilon} f'(t')\frac{d^2}{dt'^2}\int_{-\infty}^\infty \cos(\omega(t'-t))\,d\omega\,dt'\\\\ &=-\frac12 \lim_{\varepsilon\to0^+}\int_0^{t+\varepsilon} f'(t')\frac{d^2}{dt'^2}\left(2\pi \delta(t'-t)\right)\,dt'\\\\ &=-\pi f'''(t)\tag1 \end{align}$$

while

$$\begin{align} F^-(t)&=\lim_{\varepsilon\to0^+}\int_0^{t-\varepsilon} \int_0^\infty f'(t')\omega^2 \cos(\omega(t'-t))\,d\omega\,dt'\\\\ &=-\frac12\lim_{\varepsilon\to0^+}\int_0^{t-\varepsilon} f'(t')\frac{d^2}{dt'^2}\int_{-\infty}^\infty \cos(\omega(t'-t))\,d\omega\,dt'\\\\ &=-\frac12 \lim_{\varepsilon\to0^+}\int_0^{t-\varepsilon} f'(t')\frac{d^2}{dt'^2}\left(2\pi \delta(t'-t)\right)\,dt'\\\\ &=0\tag2 \end{align}$$


Alternatively, we can write

$$\begin{align} \int_0^{t^+} \int_0^\infty f'(t')\omega^2 \cos(\omega(t'-t))\,d\omega\,dt'&=\frac12\int_0^{t^+} f'(t') \int_{-\infty}^\infty \omega^2 e^{i\omega(t'-t)}\,d\omega\,dt'\\\\ &=\frac12\int_0^{t^+} f'(t') (-2\pi \delta''(t'-t))\\\\ &=-\pi f'''(t) \end{align}$$

in agreement with $(1)$, while

$$\begin{align} \int_0^{t^-} \int_0^\infty f'(t')\omega^2 \cos(\omega(t'-t))\,d\omega\,dt'&=\frac12\int_0^{t^-} f'(t') \int_{-\infty}^\infty \omega^2 e^{i\omega(t'-t)}\,d\omega\,dt'\\\\ &=\frac12\int_0^{t^-} f'(t') (-2\pi \delta''(t'-t))\\\\ &=0 \end{align}$$

in agreement with $(2)$.



NOTE:

The notation $$F(t)=\int_0^{t} \int_0^\infty f'(t')\omega^2 \cos(\omega(t'-t))\,d\omega\,dt'$$is not defined as a distribution since $\delta(x)H(x)$ is not a defined distribution.

However, if we interpret $$F(t)=\int_0^{t} \int_0^\infty f'(t')\omega^2 \cos(\omega(t'-t))\,d\omega\,dt'$$to be the simple arithmetic average of $F^+(t)$ and $F^-(t)$, then we can write $$\int_0^{t} \int_0^\infty f'(t')\omega^2 \cos(\omega(t'-t))\,d\omega\,dt'=-\frac\pi2 f'''(t)$$