[Math] Dirac Delta function inverse Fourier transform

dirac deltafourier analysis

We know that the Fourier transform of the Dirac Delta function is defined as
$$\int_{-\infty}^{\infty} \delta(t) e^{-i\omega t} dt = 1,$$

and if I were to reconstruct the function back in time domain, the inverse Fourier transform is defined as

$$\delta(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty} e^{i\omega t} d\omega.$$

How do I compute this integral analytically?

Best Answer

You can view this as a limiting process. Start with the truncated integral: $$ \frac{1}{2\pi}\int_{R}^{R}e^{j\omega t}dt = \frac{1}{\pi}\frac{\sin(R\omega)}{\omega} $$ If you integrate this against a function and take the limit as $R\rightarrow\infty$, then $$ \lim_{R\rightarrow\infty}\int_{-\infty}^{\infty}f(\omega)\frac{1}{2\pi}\int_{-R}^{R}e^{j\omega t}dt d\omega = \lim_{R\rightarrow\infty}\frac{1}{2\pi}\int_{-R}^{R}\int_{-\infty}^{\infty}f(\omega)e^{j\omega t}d\omega dt. $$ The above is $(f^{\wedge})^{\vee}(0)=f(0)$ if $f$ has some smoothness at $0$.

Related Question