# [Tex/LaTex] Placing text and equations inside a box

formattingframed

I have a paragraph that contains text, inline equations and centred equations, and I'd like to put the whole thing in a box that's centred horizontally in the page. It's a key paragraph, so I wanted to box it so that it stands out. I just want a simple box: black outline, white fill, no curved corners.

I had a look at questions with similar titles, but couldn't find anything that both worked and suited my needs. If it helps, see below for the particular paragraph I want to put in a box:

\documentclass[12pt article]{article}
\usepackage{amsmath}
\usepackage{amssymb}

\begin{document}

Let $a(b) = \left\{ \begin{array}{c l} hi & \mbox{if } t^5 \mbox{ reduced} \\ t & \mbox{otherwise} \end{array} \right.$, $xyz = \left\{ \begin{array}{c l} GH & \mbox{if } tr^{\pi} \mbox{ secluded} \\ x& \mbox{otherwise} \end{array} \right.$, $s = \left\{ \begin{array}{c l} up^{-5} & \mbox{if } t^55 \mbox{ reduced} \\ lo & \mbox{otherwise} \end{array} \right.$. \\ \\

Define the magician $M_n$ recursively, where $M_1 = \bigstar$ and

\begin{center} $\begin{array}{r} M_{3} = tr(Md) \\ M_{hat} = norbert(2304) \\ Mtri = solution \end{array}$ \end{center}

where $z$ is the smallest integer such that $z \notin \{ 0 \}$. Terminate the magician at $M_{3}$ where $3$ is such that $M_{3}, ... , M_{3}$ have all already appeared in $M_1, ... , M_{t},$ i.e.

\begin{center}

$Mtr = g, \underbrace{hi, hello, good day}_{\mbox{cousins}}, \underbrace{1,2,3,4,4,5}_{\mbox{enemies of first cousin of } g} , ... \ , M_{3}, M_{3}, M_{3}$

\end{center}

where $i$ is smallest such that $rt \neq z$.

\end{document}


Thanks! I wasn't sure what tags to use – I'd welcome any changes.

if you do not need a pagebreak inside the box, simply use a tabular, otherwise look at the package framed

\documentclass[12pt article]{article}
\usepackage{amsmath}
\usepackage{amssymb}
\begin{document}

\begin{center}
\begin{tabular}{|p{0.9\linewidth}|}\hline % or any other width
\rule{0pt}{5ex}% for more vertical space
Let $a(b) = \left\{ \begin{array}{c l} hi & \mbox{if } t^5 \mbox{ reduced} \\ t & \mbox{otherwise} \end{array} \right.$, $xyz = \left\{ \begin{array}{c l} GH & \mbox{if } tr^{\pi} \mbox{ secluded} \\ x& \mbox{otherwise} \end{array} \right.$, $s = \left\{ \begin{array}{c l} up^{-5} & \mbox{if } t^55 \mbox{ reduced} \\ lo & \mbox{otherwise} \end{array} \right.$. \\ \\

Define the magician $M_n$ recursively, where $M_1 = \bigstar$ and

\begin{center} $\begin{array}{r} M_{3} = tr(Md) \\ M_{hat} = norbert(2304) \\ Mtri = solution \end{array}$ \end{center}

where $z$ is the smallest integer such that $z \notin \{ 0 \}$. Terminate the magician at $M_{3}$ where $3$ is such that $M_{3}, ... , M_{3}$ have all already appeared in $M_1, ... , M_{t},$ i.e.

\begin{center}
$Mtr = g, \underbrace{hi, hello, good day}_{\mbox{cousins}}, \underbrace{1,2,3,4,4,5}_{\mbox{enemies of first cousin of } g} , ... \ , M_{3}, M_{3}, M_{3}$
\end{center}

where $i$ is smallest such that $rt \neq z$.\\\hline
\end{tabular}
\end{center}

\end{document}