[Tex/LaTex] Nice scientific pictures show off



Show off your best scientific illustration !

The main purpose of this question is to share beautiful scientific pictures, preferably with an educational aspect.


Your post must contain a nice picture and the associated code. One can post several pictures, but it must be done in different replies. Of course, it must be done with LaTeX & Friends : the post must start with a short sentence to present the language that you chose (TikZ, Asymptote …) and the main packages that helped you to make the picture. Don't hesitate to add comments.


The satisfaction to share without expecting a reward 🙂

Ok … 300 points reputation bounty for the best up-voted post until the 15th of Feb.

Related links

I'll contact Texample.net webmaster to see if he is interested to share the best illustrations, with the participant's agreement of course.

Contest: Show Off Your Skillz in TeX & Friends

Best Answer

The following image illustrates the blowup of a plane at a point--an important construction in algebraic geometry (compare the cover of this book). The image was produced using Asymptote. (Note: the code and the image have both been refined since they were first posted.)

The vector image may be viewed by following this link.


usepackage("amssymb");  // for the \mathbb command

import graph3;

real R=8;

struct scaler {
    private real factor;

    void operator init(real factor) {
        this.factor = factor;

    real scale(real t) {return factor*atan(tan(t)/factor);}
    real invert(real t) {return tan(atan(t)*factor)/factor;}

scaler theScaler = scaler(6);

triple f(pair t) {
    real r = t.x;
    real theta = 2 * atan(t.y*2/pi);
//  real theta = -t.y;
    return (r*cos(theta),r*sin(theta),theScaler.scale(theta));

int resolution = 10;
real epsilon = .01;
real vmin = -pi/2;
real vmax = pi/2;
real umin = -R;
real umax = R;
splinetype[] Linear = new splinetype[] {linear, linear, linear};
splinetype[] ZMonotonic = new splinetype[] {notaknot, notaknot, monotonic};
surface sBack=surface(f,(umin,vmin),(0,vmax),nu=resolution, nv=2*resolution,  usplinetype=Linear, vsplinetype = ZMonotonic);
surface sFront = surface(f, (0,vmin), (umax,vmax), nu=resolution, nv=2*resolution, usplinetype=Linear, vsplinetype=ZMonotonic);

pen meshpen = heavygray + linewidth(0.2);

material surfacepen = 

draw(sBack, surfacepen=surfacepen, meshpen=meshpen);
draw(f((0,vmin)) -- f((0,vmax)), darkgray+linewidth(1.0));   // the exceptional divisor
draw(sFront, surfacepen=surfacepen, meshpen=meshpen);

pen planePen = black+linewidth(0.3);

triple bottomPoint = f((0,vmin));
triple planeCenter = 2.0*bottomPoint;
draw((bottomPoint-.6Z)--(planeCenter+.6Z), arrow=Arrow3(TeXHead2), p=linewidth(0.9),

real planeZ = planeCenter.z;

triple h(pair t) {
    return (t.x, t.y, planeZ);

triple g(pair t) {
    triple projectFrom = f(t);
    return h((projectFrom.x, projectFrom.y));
triple g(real tx, real ty) { return g((tx, ty)); }

real planeRadius = R+1;
surface thePlane = surface(h, (-planeRadius,-planeRadius),(planeRadius,planeRadius),

path3 planeOutline = h((-planeRadius,-planeRadius)) -- h((-planeRadius,planeRadius)) -- h((planeRadius,planeRadius)) -- h((planeRadius,-planeRadius)) -- cycle;

for (real u = 0; u <= R; u += R/resolution)
  draw(circle(planeCenter, u), planePen);
for (real v = vmin; v < vmax; v += (vmax-vmin)/(2*resolution)) {
  draw(g(umin,v) -- g(umax,v), planePen);
draw(planeOutline, p=planePen);

//Embed the label "\mathbb P^2" on the plane:
real labelScale = 1.5;  
Label planeLabel = Label(scale(labelScale, labelScale*1.3, 1)*"$\mathbb P^2$", fontsize(10pt));
Label placedPlaneLabel = shift((planeRadius-1.2),(planeRadius-1.5),planeCenter.z)*planeLabel;

label(planeLabel, position = (planeRadius-1.2, planeRadius-1.5, planeCenter.z));