[Tex/LaTex] Making a box around an equation

alignboxes

I have a summary of equations which is written in an align environment. I want to make a box around it but don't know how to do this efficiently. Here is a MWE

\documentclass{article}
\usepackage[fleqn]{amsmath}

\setlength\mathindent{1cm}
\linespread{1.3}

\begin{document}

\textbf{\Large Solution.} Here is a summary of what we obtained in class for the case of periodic distribution of eigen-strain
\begin{align*}
&\text{Given the system of PDEs} \\
&C_{ijkl}u_{k,lj} = C_{ijkl} \varepsilon^*_{kl,j} \\
&\text{with a periodic distribution of eigen-strain} \\
&\varepsilon^*_{kl}(\mathbf{x},\boldsymbol{\xi})=\bar{\varepsilon}^*_{kl}(\boldsymbol{\xi})\exp(\mathrm{i}\,\boldsymbol{\xi}\cdot\mathbf{x}) \\
&\text{the general solution can be obtained as} \\
&K_{ik} = C_{ijkl}\xi_l\xi_j \\
&D(\boldsymbol{\xi}) = \epsilon_{mnl} K_{m1} K_{n2} K_{l3} \\
&N_{ij}(\boldsymbol{\xi}) = \frac{1}{2} \epsilon_{ikl}\epsilon_{jmn} K_{km} K_{ln} \\
&u_i(\mathbf{x},\boldsymbol{\xi}) = -\mathrm{i}\,C_{jlmn} \bar{\varepsilon}^*_{mn} \xi_l N_{ij}(\boldsymbol{\xi}) D^{-1}(\boldsymbol{\xi})\exp(\mathrm{i}\,\boldsymbol{\xi}\cdot\mathbf{x}) \\
&\varepsilon_{ij}(\mathbf{x},\boldsymbol{\xi}) = C_{klmn} \bar{\varepsilon}^*_{mn} \xi_l ( \xi_j N_{ik}(\boldsymbol{\xi}) + \xi_i N_{jk}(\boldsymbol{\xi})) D^{-1}(\boldsymbol{\xi})\exp(\mathrm{i}\,\boldsymbol{\xi}\cdot\mathbf{x}) \\
&\sigma_{ij}(\mathbf{x},\boldsymbol{\xi}) = C_{ijkl} ( C_{pqmn} \bar{\varepsilon}^*_{mn} \xi_q \xi_l N_{kp}(\boldsymbol{\xi}) D^{-1}(\boldsymbol{\xi})\exp(\mathrm{i}\,\boldsymbol{\xi}\cdot\mathbf{x})-\varepsilon^*_{kl}(\mathbf{x}))
\end{align*}

\end{document}

Best Answer

I see you use amsmath, which has a nice \boxed command. The only catch is you should use aligned instead of align* inside it:

\documentclass{article}
\usepackage[fleqn]{amsmath}
\thispagestyle{empty}
\setlength\mathindent{1cm}
\linespread{1.3}

\begin{document}

\textbf{\Large Solution.} Here is a summary of what we obtained in class for the case of periodic distribution of eigen-strain

\boxed{\begin{aligned}
&\text{Given the system of PDEs} \\
&C_{ijkl}u_{k,lj} = C_{ijkl} \varepsilon^*_{kl,j} \\
&\text{with a periodic distribution of eigen-strain} \\
&\varepsilon^*_{kl}(\mathbf{x},\boldsymbol{\xi})=\bar{\varepsilon}^*_{kl}(\boldsymbol{\xi})\exp(\mathrm{i}\,\boldsymbol{\xi}\cdot\mathbf{x}) \\
&\text{the general solution can be obtained as} \\
&K_{ik} = C_{ijkl}\xi_l\xi_j \\
&D(\boldsymbol{\xi}) = \epsilon_{mnl} K_{m1} K_{n2} K_{l3} \\
&N_{ij}(\boldsymbol{\xi}) = \frac{1}{2} \epsilon_{ikl}\epsilon_{jmn} K_{km} K_{ln} \\
&u_i(\mathbf{x},\boldsymbol{\xi}) = -\mathrm{i}\,C_{jlmn} \bar{\varepsilon}^*_{mn} \xi_l N_{ij}(\boldsymbol{\xi}) D^{-1}(\boldsymbol{\xi})\exp(\mathrm{i}\,\boldsymbol{\xi}\cdot\mathbf{x}) \\
&\varepsilon_{ij}(\mathbf{x},\boldsymbol{\xi}) = C_{klmn} \bar{\varepsilon}^*_{mn} \xi_l ( \xi_j N_{ik}(\boldsymbol{\xi}) + \xi_i N_{jk}(\boldsymbol{\xi})) D^{-1}(\boldsymbol{\xi})\exp(\mathrm{i}\,\boldsymbol{\xi}\cdot\mathbf{x}) \\
&\sigma_{ij}(\mathbf{x},\boldsymbol{\xi}) = C_{ijkl} ( C_{pqmn} \bar{\varepsilon}^*_{mn} \xi_q \xi_l N_{kp}(\boldsymbol{\xi}) D^{-1}(\boldsymbol{\xi})\exp(\mathrm{i}\,\boldsymbol{\xi}\cdot\mathbf{x})-\varepsilon^*_{kl}(\mathbf{x}))
\end{aligned}}

\end{document}

enter image description here