[Tex/LaTex] How to move the matrix on the left side

matricespositioning

I would like to move the matrix on the left side, alligned with the text. Do you know how to make it?

\documentclass[10pt,a4paper,titlepage]{book} 
\usepackage[paperwidth=165mm, paperheight=238mm, left=2.5cm,right=2cm,top=2cm,bottom=2cm]{geometry}


%\renewcommand{\baselinestretch}{1.8}
%\smartqed  % flush right qed marks, e.g. at end of proof
%
\usepackage[graphicx]{realboxes}
\usepackage{graphicx}
\usepackage{epstopdf}
%\usepackage[english]{babel}
\usepackage{lineno}
\linenumbers
\usepackage{amsmath}

\usepackage{amssymb}
\usepackage[justification=centering]{caption}

\usepackage{pdflscape}
\usepackage{nomencl}
\makenomenclature

\usepackage{etoolbox}
\renewcommand\nomgroup[1]{%
  \item[\bfseries
  \ifstrequal{#1}{A}{Symbols}{%
  \ifstrequal{#1}{B}{Subscripts}{%
  \ifstrequal{#1}{C}{Superscripts}{%
  \ifstrequal{#1}{D}{Acronyms{}}}}}%
]}

 % This will add the units
%----------------------------------------------
\newcommand{\nomunit}[1]{%
\renewcommand{\nomentryend}{\hspace*{\fill}#1}}
%----------------------------------------------


\begin{document}
%\fboxsep=0pt
%\vspace*{\fill}
 % 


      % \centering
        %\rotatebox{90}{\fbox{%

\section{APPENDIX  }
\label{sec:5}
Here below the matrix when Dirichlet and Neumann boundary condition are set.

%\fboxsep=0pt

%\par\noindent


\begin{minipage}{\linewidth}

%\hspace*{30 cm}
 \vspace*{1 cm}

 \begin{minipage}{0.9\textheight}
               %\hspace*{\fill}
               % \vspace*{\fill}
                \footnotesize

\begin{align*}
\begin{bmatrix}
T_{1} \\
T_{2} \\
T_{3} \\
... \\
T_{n-1}  \\
T_{n}
\end{bmatrix}^{v+1}
\quad
=&
\begin{bmatrix} 
1+2b+2H  & -2b  &   0  &  0   & 0    &  0   \\
-b       & 1+2b &  -b  &  0   & 0    &  0   \\
0        &  -b  & 1+2b &  -b  & 0    &  0   \\
...      & ...  & ...  & ...  & ...  & ...  \\
0        &   0  &  0   &  -b  & 1+2b &  -b  \\
0        &   0  &  0   &   0  &  0   &  1
\end{bmatrix}^{inv}
\quad
\begin{bmatrix} 
T_{1} \\
T_{2} \\
T_{3} \\
...   \\
T_{n-1}\\
T_{n}
\end{bmatrix}^{v}
\\ &\quad+
\begin{bmatrix} 
1+2b+2H  & -2b  &   0  &  0   & 0    &  0  \\
-b       & 1+2b &  -b  &  0   & 0    &  0  \\
0        &  -b  & 1+2b &  -b  & 0    &  0  \\
...      & ...  & ...  & ...  & ...  & ... \\
0        &   0  &  0   &  -g  & 1+2g &  -g  \\
0        &   0  &  0   &   0  &  0   &   1
\end{bmatrix}^{inv}
\quad
\begin{bmatrix} 
\frac{2h\Delta \theta Tair}{\rho c \Delta x} \\
0 \\
0 \\
...   \\
0\\
60
\end{bmatrix}^{v}
\end{align*}
                %\vspace*{\fill}
            \end{minipage}
       % }
        %}
        %\captionof{figure}{Some Matrix}
       % \label{eq:somematrix}
    \end{minipage}
\vspace{1 cm}

$ H $ is a term included in the convective matrix coming from the convective boundary condition and $b$, $g$ are the Fourier numbers for different materials.
\begin{equation}
H=\frac{ h \cdot \Delta \theta }{\rho \cdot c \cdot \Delta x}
\end{equation}
\nomenclature[A]{$b,g$}{ Fourier numbers for different materials \nomunit{}}
\end{document}

Best Answer

With a light (local) squeezing of the space between columns and some additional negative spacing where appropriate. I removed the wrong \quad spaces you are using.

\documentclass[10pt,a4paper,titlepage]{book} 
\usepackage[paperwidth=165mm, paperheight=238mm, left=2.5cm,right=2cm,top=2cm,bottom=2cm]{geometry}


\usepackage[graphicx]{realboxes}
\usepackage{graphicx}
\usepackage{epstopdf}
%\usepackage[english]{babel}
\usepackage{lineno}
\linenumbers
\usepackage{amsmath}

\usepackage{amssymb}
\usepackage[justification=centering]{caption}

\usepackage{pdflscape}
\usepackage{nomencl}
\makenomenclature

\usepackage{etoolbox}
\renewcommand\nomgroup[1]{%
  \item[\bfseries
  \ifstrequal{#1}{A}{Symbols}{%
  \ifstrequal{#1}{B}{Subscripts}{%
  \ifstrequal{#1}{C}{Superscripts}{%
  \ifstrequal{#1}{D}{Acronyms{}}}}}%
]}

 % This will add the units
%----------------------------------------------
\newcommand{\nomunit}[1]{%
\renewcommand{\nomentryend}{\hspace*{\fill}#1}}
%----------------------------------------------


\begin{document}

\section{APPENDIX}\label{sec:5}

Here below the matrix when Dirichlet and Neumann boundary condition are set.
\begingroup\addtolength{\arraycolsep}{-1.3pt}
\begin{align*}
\begin{bmatrix}
T_{1} \\
T_{2} \\
T_{3} \\
\dots \\
T_{n-1}  \\
T_{n}
\end{bmatrix}^{\!v+1}
&=
\begin{bmatrix} 
1+2b+2H  & -2b  &   0  &  0   & 0    &  0   \\
-b       & 1+2b &  -b  &  0   & 0    &  0   \\
0        &  -b  & 1+2b &  -b  & 0    &  0   \\
\dots      & \dots  & \dots  & \dots  & \dots  & \dots  \\
0        &   0  &  0   &  -b  & 1+2b &  -b  \\
0        &   0  &  0   &   0  &  0   &  1
\end{bmatrix}^{\!\mathrm{inv}}
\begin{bmatrix} 
T_{1} \\
T_{2} \\
T_{3} \\
\dots   \\
T_{n-1}\\
T_{n}
\end{bmatrix}^{\!v}
\\ &+
\begin{bmatrix} 
1+2b+2H  & -2b  &   0  &  0   & 0    &  0  \\
-b       & 1+2b &  -b  &  0   & 0    &  0  \\
0        &  -b  & 1+2b &  -b  & 0    &  0  \\
\dots      & \dots  & \dots  & \dots  & \dots  & \dots \\
0        &   0  &  0   &  -g  & 1+2g &  -g  \\
0        &   0  &  0   &   0  &  0   &   1
\end{bmatrix}^{\mathrm{inv}}
\begin{bmatrix} 
\frac{2h\Delta \theta Tair}{\rho c \Delta x} \\
0 \\
0 \\
\dots   \\
0\\
60
\end{bmatrix}^{\!v}
\end{align*}\endgroup
$H$ is a term included in the convective matrix coming from the convective boundary 
condition and $b$, $g$ are the Fourier numbers for different materials.
\begin{equation}
H=\frac{ h \cdot \Delta \theta }{\rho \cdot c \cdot \Delta x}
\end{equation}
\nomenclature[A]{$b,g$}{ Fourier numbers for different materials \nomunit{}}
\end{document}

enter image description here

Related Question