Continuum Mechanics – Transformation Matrix of a Strain Tensor

classical-mechanicscontinuum-mechanicsstress-strain

If the stress $\sigma_{xx}$ is applied to an isotropic, three-dimensional body, the following strain tensor results:
$$\boldsymbol\epsilon=\left(\begin{matrix}\frac{1}{E}\sigma _{xx} & 0 & 0 \\0 & -\frac{\nu}{E}\sigma _{xx} & 0 \\0 & 0 & -\frac{\nu}{E}\sigma _{xx}\end{matrix}\right)$$
Now the tensor should be rotated around the y-axis with the angle $\alpha$.

figure

The transformation should be carried out with $ A'=QAQ^T $. How would be the transformation matrix $ Q $ in this case?

Best Answer

I use this notation

the transformation matrix, transformed a vector components from rotate system index B to inertial system index I

rotation about the x-axis angle $~\alpha~$ between y and y'

$${_B^I}\,Q_x=\left[ \begin {array}{ccc} 1&0&0\\ 0&\cos \left( \alpha \right) &-\sin \left( \alpha \right) \\ 0& \sin \left( \alpha \right) &\cos \left( \alpha \right) \end {array} \right] $$

rotation about the y-axis angle $~\alpha~$ between x and x'

$${_B^I}\,Q_y= \left[ \begin {array}{ccc} \cos \left( \alpha \right) &0&\sin \left( \alpha \right) \\ 0&1&0\\ -\sin \left( \alpha \right) &0&\cos \left( \alpha \right) \end {array} \right] $$

rotation about the z-axis angle $~\alpha~$ between x and x'

$${_B^I}\,Q_z=\left[ \begin {array}{ccc} \cos \left( \alpha \right) &-\sin \left( \alpha \right) &0\\ \sin \left( \alpha \right) &\cos \left( \alpha \right) &0\\ 0&0&1\end {array} \right] $$

vector transformation from B to I system

$$\mathbf v_I={_B^I}\mathbf Q\,\mathbf v_B$$

matrix transformation

$$\mathbf M_I=\mathbf ={_B^I}\mathbf Q \,\mathbf M_B\,{_I^B}\mathbf Q =\mathbf Q\,\mathbf M_B\,\mathbf Q^T\\ \mathbf M_B=\mathbf ={_I^B}\mathbf Q \,\mathbf M_I\,{_B^I}\mathbf Q =\mathbf Q^T\,\mathbf M_I\,\mathbf Q $$

your matrix is

$$\mathbf \epsilon_I= \left[ \begin {array}{ccc} \epsilon_{{11}}&0&0\\ 0& \epsilon_{{22}}&0\\ 0&0&\epsilon_{{22}}\end {array} \right] \\ \mathbf \epsilon_B=Q^T\,\mathbf \epsilon_I\,\mathbf Q $$

for $~\mathbf Q=\mathbf Q_x~$ you obtain

$$\mathbf \epsilon_B=\mathbf \epsilon_I$$

for $~\mathbf Q=\mathbf Q_y~$

$$\mathbf \epsilon_B=\left[ \begin {array}{ccc} \left( \cos \left( \alpha \right) \right) ^{2}\epsilon_{{11}}+\epsilon_{{22}}- \left( \cos \left( \alpha \right) \right) ^{2}\epsilon_{{22}}&0&\cos \left( \alpha \right) \sin \left( \alpha \right) \left( -\epsilon_{{22}}+\epsilon_ {{11}} \right) \\ 0&\epsilon_{{22}}&0 \\ \cos \left( \alpha \right) \sin \left( \alpha \right) \left( -\epsilon_{{22}}+\epsilon_{{11}} \right) &0& \left( \cos \left( \alpha \right) \right) ^{2}\epsilon_{{22}}+\epsilon_{{11} }- \left( \cos \left( \alpha \right) \right) ^{2}\epsilon_{{11}} \end {array} \right] $$

for $~\mathbf Q=\mathbf Q_z~$

$$\mathbf \epsilon_B= \left[ \begin {array}{ccc} \left( \cos \left( \alpha \right) \right) ^{2}\epsilon_{{11}}+\epsilon_{{22}}- \left( \cos \left( \alpha \right) \right) ^{2}\epsilon_{{22}}&-\cos \left( \alpha \right) \sin \left( \alpha \right) \left( -\epsilon_{{22}}+\epsilon_ {{11}} \right) &0\\ -\cos \left( \alpha \right) \sin \left( \alpha \right) \left( -\epsilon_{{22}}+\epsilon_{{11}} \right) & \left( \cos \left( \alpha \right) \right) ^{2}\epsilon_{{ 22}}+\epsilon_{{11}}- \left( \cos \left( \alpha \right) \right) ^{2} \epsilon_{{11}}&0\\ 0&0&\epsilon_{{22}}\end {array} \right] $$

Related Question