Quantum Field Theory – The Effective Action in the Linear Sigma Model

1pi-effective-actionlagrangian-formalismperturbation-theoryquantum-field-theory

I am reading the section 11.4 of Peskin and Schroeder's book (page 373), and there is a step I could not follow.
To calculate the effective action of linear sigma model, the determinant of $\frac{\delta^{2}\mathcal{L}}{\delta\phi^{i}\delta\phi^{j}}$, and in peskin's book, it shows that
$$\frac{\delta^2\mathcal{L}}{\delta\phi^i\delta\phi^{j}}=-\partial^2\delta^{ij}+\mu^2\delta^{ij} – \lambda[(\phi_{\mathrm{cl}}^k)^2\delta^{ij} + 2\phi_{\mathrm{cl}}^i\phi_{\mathrm{cl}}^j].\tag{11.67}$$
Then, orient the coordinates to make the $\phi^{i}_{cl}$ points in the Nth direction,
$$\phi^{i}_{cl}=(0,0,…,0,\phi_{cl}),\tag{11.68}$$
and the operator in the RHS of the first equation is just a KG operator $(-\partial^{2}-m^{2}_i),$ where
$$m^2_i=\begin{cases} \lambda\phi^2_{cl}-\mu^2\quad acting\; on\;\eta^1,…,\eta^{N-1};\\3\lambda\phi^2_{cl}-\mu^2\quad acting\; on\;\eta^N.\end{cases}\tag{11.69}$$
I think for all $\eta^i$, the value of $m^2_i$ should equal to $3\lambda\phi^2_{cl}-\mu^2$, how the $\lambda\phi^2_{cl}-\mu^2$ is obtained?

Best Answer

Simply read the diagonal N×N matrix $$ -\partial^2\delta^{ij}+\mu^2\delta^{ij} - \lambda[ v^2 \delta^{ij} + 2\phi_{\mathrm{cl}}^i\phi_{\mathrm{cl}}^j], \tag{11.67}$$ where, to allay your confusion, I call $\phi_{cl}=v$, so $(\phi_{\mathrm{cl}}^k)^2=v^2$.

The non-gradient part of this diagonal matrix is, for $i,j= 1...,N-1$, $$(\mu^2-\lambda v^2, \mu^2-\lambda v^2,...,\mu^2-\lambda v^2),$$ whereas the last entry (only!) in the diagonal is $$ \mu^2-\lambda v^2-2\lambda v^2= \mu^2-3\lambda v^2. $$