Quantum Mechanics – Solving Schrödinger Equation with a Harmonic Oscillator Potential

harmonic-oscillatorhomework-and-exercisesquantum mechanicsschroedinger equation

enter image description here

enter image description here

enter image description here

This is referenced from the textbook Introduction to Quantum Mechanics by Griffith. I am learning about the application of ladder operators to solve algebraically the Shrodinger equation for harmonic oscillators, but have a problem figuring out how to obtain equation 2.66 for quite some time. Can someone point out how can this be obtained?

Best Answer

Combining Eq. (2.58) and (2.62) gives

\begin{equation*} \hbar \omega \left( a_{\pm } a_{\mp } \pm \frac{1}{2}\right) \psi _{n} =\hbar \omega \left( n+\frac{1}{2}\right) \psi _{n} \end{equation*}

\begin{equation*} \left( a_{\pm } a_{\mp } \pm \frac{1}{2}\right) \psi _{n} =\left( n+\frac{1}{2}\right) \psi _{n} . \end{equation*}

This is two equations in one, one of which is

\begin{equation*} \left( a_{+} a_{-} +\frac{1}{2}\right) \psi _{n} =\left( n+\frac{1}{2}\right) \psi _{n} \end{equation*}

\begin{equation*} \rightarrow a_{+} a_{-} \psi _{n} =n\psi _{n} . \end{equation*}

The other one is

\begin{equation*} \left( a_{-} a_{+} -\frac{1}{2}\right) \psi _{n} =\left( n+\frac{1}{2}\right) \psi _{n} \end{equation*}

\begin{equation*} \rightarrow a_{-} a_{+} \psi _{n} =( n+1) \psi _{n} . \end{equation*}