Quantum Mechanics – Rotation of Spin Operator

angular momentumcommutatoroperatorsquantum mechanicsrotation

Consider for example the rotation of the $x$ component of spin by $\pi$ about the $z$ axis. This flips the spin giving $$e^{i\pi S_z}S_xe^{-i\pi S_z}=-S_x.$$
However, can this be proved directly using the commutation relation $[S_z,S_x]=iS_y$ and expanding the exponential?

As $[S_x,[S_z,S_x]]\neq 0$, I cannot use the usual formula to simplify it, but I am hoping there might be a similar formula which requires something like $[S_z,[S_x,[S_z,S_x]]]=0$.

Best Answer

If we consider the function $$ f(\lambda) = e^{\lambda A} B e^{- \lambda A}, $$ and consider the Taylor expansion of $f(\lambda)$ around $\lambda = 0$, then the observation that $f(0) = B$, and $$ \frac{df}{d\lambda} = [A,f(\lambda)], \\ \frac{d^2f}{d\lambda^2} = \left[ A, \frac{df}{d\lambda} \right] = [A,[A,f(\lambda)]], $$ etc., we find $$ e^{\lambda A} B e^{- \lambda A} = B + \frac{\lambda}{1!} [A,B] + \frac{\lambda^2}{2!} [A,[A,B]] + \frac{\lambda^3}{3!} [A,[A,[A,B]]] + \cdots. $$

Now consider the special case where $$ [A,[A,B]] = \beta B, $$ which is true for the problem you are interested in. This results in a simplification where all terms collapse into terms proportional to either $B$ or $[A,B]$. Explicitly, $$ e^{\lambda A} B e^{- \lambda A} = B + \frac{\lambda}{1!} [A,B] + \frac{\lambda^2}{2!} \beta B + \frac{\lambda^3}{3!} \beta [A,B] + \frac{\lambda^4}{4!} \beta^2 B + \cdots \\ = B \left\{ 1 + \frac{(\lambda \sqrt{\beta})^2}{2!} + \frac{(\lambda \sqrt{\beta})^4}{4!} + \cdots \right\} + \frac{[A,B]}{\sqrt{\beta}} \left\{ \frac{\lambda \sqrt{\beta}}{1!} + \frac{(\lambda \sqrt{\beta})^3}{3!} + \cdots \right\}. $$ Then you can compare this to the Taylor series for the hyperbolic functions, obtaining $$ e^{\lambda A} B e^{- \lambda A} = B \cosh (\lambda \sqrt{\beta}) + \frac{[A,B]}{\sqrt{\beta}}\sinh (\lambda \sqrt{\beta}). $$ In your case, $A = S_z$, $B = S_x$, $\lambda = i \pi$, and $\beta = 1$. By just plugging into the above formula, you quickly find $$ e^{i \pi S_z} S_x e^{-i \pi S_z} = -S_x. $$

Related Question