Product Rule – Product Rule for Bras and Kets in Quantum Mechanics

hilbert-spaceoperatorsquantum mechanicsschroedinger equationtime evolution

For the time evolution of expectation value of an operator $\Omega$, we can write

$$\frac{d}{dt}\langle\psi|\Omega |\psi\rangle=\langle\dot\psi|\Omega|\psi\rangle+\langle\psi|\dot\Omega|\psi\rangle+\langle\psi|\Omega|\dot\psi\rangle$$

by the product rule. How can we show that this is true in the $|x\rangle$ basis?

I tried
$$\frac{d}{dt}\langle\psi|\Omega |\psi\rangle=\frac{d}{dt}\int\langle\psi|x\rangle\langle x|\Omega|x'\rangle\langle x'|\psi\rangle dxdx'=\frac{d}{dt}\int\psi(x,t)^*\langle x|\Omega|x'\rangle\psi(x',t)dxdx'$$

How do I proceed to express $\langle x|\Omega|x'\rangle$ in terms of $x$, $x'$ and $t$ if I don't know what $\Omega$ is?

Best Answer

Typically we define the notation $\langle x|\hat \Omega(t) | x'\rangle \equiv \Omega(x,x',t)$, where $\hat \Omega(t)$ is a (generally time-dependent) abstract operator and $\Omega(x,x',t)$ is an operator which acts on wavefunctions in the position basis. A common example is the momentum operator: $$\langle x|\hat P|x'\rangle = \delta(x-x') \frac{\hbar}{i}\frac{d}{dx'}$$

As a result, $$\frac{d}{dt}\langle x|\hat\Omega(t)|x'\rangle = \langle x |\frac{d\hat\Omega(t)}{dt}|x'\rangle \equiv \frac{\partial}{\partial t}\Omega(x,x',t)$$


It should also be noted that we can differentiate abstract operators without moving to a basis. The operator $\frac{d}{dt}\hat\Omega(t)$ is the operator such that

$$\frac{d\hat\Omega}{dt}|\psi\rangle = \lim_{\epsilon\rightarrow 0} \frac{\hat \Omega(t+\epsilon)|\psi\rangle-\hat\Omega(t)|\psi\rangle}{\epsilon}$$ We can evaluate this in a basis if we wish, but there's no particular need to.