[Physics] Why isn’t there a second baryon octet

baryonsgroup-theoryquarksrepresentation-theorystandard-model

Let's temporarily ignore spin. If 3 denotes the standard representation of $SU(3)_F$, 1 the trivial rep, 8 the adjoint rep and 10 the symmetric cube, then it's well-known that

$$ 3 \otimes 3 \otimes 3 = 1 \oplus 8 \oplus 8 \oplus 10.$$

Interpreting the 3's as the space of up/down/strange flavour states for a quark, the tensor cube is interpreted as the space of baryon states that can be obtained by combining three light quarks. Obviously spin matters, but at least this should give a classification of baryons modulo spin into $SU(3)_F$-multiplets.

There are two octets here, but in the literature I have only seen one of them described. What is the second octet?

I appreciate that the answer may be "it's more complicated than that".

Best Answer

enter image description here

enter image description here

These two Figures are excerpt of a page in : A Modern Introduction to Particle Physics, by Fayyazuddin & Riazuddin, 2nd Edition 2000.

The first shows the well-known octet of the mixed antisymmetric tensor $\:\boldsymbol{8}\:$ while the second shows the octet of the mixed symmetric tensor $\:\boldsymbol{8'}\:$. I don't know what particles, if any, are represented by the latter octet.

See also my answer here : Symmetry in terms of matrices. Therein octet $\:\boldsymbol{8}\:$ is produced by the mixed antisymmetric tensor $\:Y_{ijk}\:$, see equations (B.25) and (B.35), while octet $\:\boldsymbol{8'}\:$ is produced by the mixed symmetric tensor $\:X_{ijk}\:$, see equations (B.24) and (B.37).


The Figures below are excerpts from : A Modern Introduction to Particle Physics-Volume 1: Quantum Field Theory and Particles, by Y.Nagashima, Edition 2010.

enter image description here

enter image description here


In 'QUARKS AND LEPTONS: An Introductory Course in Modern Particle Physics', F.Halzen-A.Martin, Edition 1984, we meet the following concerning the spin-up proton: We take the mixed-antisymmetric and mixed-symmetric states
\begin{align} \mathrm p_{_A} & =\sqrt{\tfrac12}\left(\mathrm u \mathrm d- \mathrm d\mathrm u \right)\mathrm u \:\: \left\{\in \boldsymbol{8}_{_{MA}}\equiv \boldsymbol{8}\right\} \tag{2.60}\\ \mathrm p_{_S} & =\sqrt{\tfrac16}\bigl[\left(\mathrm u \mathrm d+ \mathrm d\mathrm u \right)\mathrm u-2\mathrm u \mathrm u \mathrm d \bigr]\:\: \left\{\in \boldsymbol{8}_{_{MS}}\equiv \boldsymbol{8'}\right\} \tag{2.62} \end{align} The state $\:\mathrm p_{_A} \:$ is the first member of octet $\:\boldsymbol{8}\:$ shown in the first Figure above while the state $\:\mathrm p_{_S} \:$ is the first member of octet $\:\boldsymbol{8'}\:$ shown in the second Figure.

These are multiplets produced in $\:\rm SU(2)-$isospin and by analogy the $\:\rm SU(2)-$spin antisymmetric, symmetric multiplets are produced by replacing in (2.60), (2.62)
\begin{align} \mathrm u & \quad \Longrightarrow \quad \uparrow \nonumber\\ \mathrm d & \quad \Longrightarrow \quad \downarrow \tag{01} \end{align} so \begin{align} \chi\left(M_A\right) & =\sqrt{\tfrac12}\left(\uparrow \downarrow\uparrow -\downarrow\uparrow\uparrow \right) \nonumber\\ \chi\left(M_S\right) & =\sqrt{\tfrac16}\left(\uparrow \downarrow\uparrow +\downarrow\uparrow\uparrow -2\uparrow\uparrow \downarrow \right) \tag{2.65} \end{align} Next the spin-up proton is derived from \begin{equation} \vert \mathrm p\!\uparrow\, \rangle=\sqrt{\tfrac12}\bigl[\mathrm p_{_A}\chi\left(M_A\right)+\mathrm p_{_S}\chi\left(M_S\right) \bigr] \tag{02} \end{equation} where \begin{align} \mathrm p_{_A}\chi\left(M_A\right) & \simeq \left(\mathrm u \mathrm d \mathrm u-\mathrm d \mathrm u \mathrm u\right)\left(\uparrow \downarrow\uparrow -\downarrow\uparrow\uparrow \right) \nonumber\\ & =\bigl(\mathrm u\!\!\uparrow\!\mathrm d\!\!\downarrow\!\mathrm u\!\!\uparrow -\mathrm u\!\!\downarrow\!\mathrm d\!\!\uparrow\!\mathrm u\!\!\uparrow -\mathrm d\!\!\uparrow\!\mathrm u\!\!\downarrow\!\mathrm u\!\!\uparrow +\mathrm d\!\!\downarrow\!\mathrm u\!\!\uparrow\!\mathrm u\!\!\uparrow \bigr) \tag{03} \end{align} and \begin{align} \mathrm p_{_S}\chi\left(M_S\right) & \simeq\left(\mathrm u \mathrm d\mathrm u + \mathrm d\mathrm u \mathrm u-2\mathrm u \mathrm u \mathrm d \right)\left(\uparrow \downarrow\uparrow +\downarrow\uparrow\uparrow -2\uparrow\uparrow \downarrow \right) \nonumber\\ & =\mathrm u\!\!\uparrow\!\mathrm d\!\!\downarrow\!\mathrm u\!\!\uparrow + \mathrm u\!\!\downarrow\!\mathrm d\!\!\uparrow\!\mathrm u\!\!\uparrow-2 \mathrm u\!\!\uparrow\!\mathrm d\!\!\uparrow\!\mathrm u\!\!\downarrow +\mathrm d\!\!\uparrow\!\mathrm u\!\!\downarrow\!\mathrm u\!\!\uparrow +\mathrm d\!\!\downarrow\!\mathrm u\!\!\uparrow\!\mathrm u\!\!\uparrow +\cdots \tag{04} \end{align} and finally

\begin{align} \vert \mathrm p\!\uparrow\, \rangle & =\sqrt{\tfrac{1}{18}}\bigl[\mathrm u \mathrm u \mathrm d \left(\uparrow \downarrow\uparrow +\downarrow\uparrow\uparrow -2\uparrow\uparrow \downarrow \right)+\mathrm u \mathrm d \mathrm u \left(\uparrow\uparrow\downarrow +\downarrow\uparrow\uparrow -2\uparrow\downarrow \uparrow \right)+\mathrm d \mathrm u \mathrm u \left(\uparrow\downarrow \uparrow+\uparrow\uparrow\downarrow -2\downarrow \uparrow\uparrow \right)\bigr] \nonumber\\ &=\sqrt{\tfrac{1}{18}}\bigl[\mathrm u\!\!\uparrow\!\mathrm u\!\!\downarrow\!\mathrm d\!\!\uparrow +\mathrm u\!\!\downarrow\!\mathrm u\!\!\uparrow\!\mathrm d\!\!\uparrow -2\mathrm u\!\!\uparrow\!\mathrm u\!\!\uparrow\!\mathrm d\!\!\downarrow +\text{permutations}\bigr] \tag{2.71} \end{align}


From above notes we conclude that the real baryon $\:(1/2)^{+}\:$ octet is a combination of the two octets with mixed symmetry $\:\boldsymbol{8},\boldsymbol{8'}$.

Related Question