[Physics] Why isn’t length contraction permanent even though time dilation is

length-contractionspecial-relativitytime-dilation

It's my understanding that when something is going near the speed of light in reference to an observer, time dilation occurs and time goes slower for that fast-moving object. However, when that object goes back to "rest", it has genuinely aged compared to the observer. It's not like time goes slow for a while, and then speeds back to "normal," so that the age of the observer once again matches the object. The time dilation is permanent. Why wouldn't the same thing happen with length contraction? Since the two are so related, you'd think if one is permanent, the other would be also. And from everything I've read so far, length contraction is not permanent. An object will be at rest touching an observer, go far away near light speed, return to touching the observer, and be the same length it was at the beginning. It shortens, and then grows long again, as if its shrinkage was an illusion the whole time. Did I just not read the right things or what? Were my facts gathered incorrectly?

Best Answer

Time dilation is a comparison of rates. When an object is moving fast with respect to you, it's clock rate is slow, and when it comes to rest with respect to you its clock rate returns to normal. The time difference between the two clocks at this time is due to the accumulation due to these different time rates. That is the leftover effect of the time dilation but not the time dilation itself.

Length contraction, like time dilation, exists when there is relative motion and goes away when there is no relative motion, but there isn't any "accumulation" with length contraction, so there is nothing to be "left over".

Related Question