[Physics] Why is the Planck length considered fundamental, but not the Planck mass

physical constants

The planck length is considered by many to be a lower bound of the scale where new physics should appear to account for quantum gravity.
The reasoning behind, as far as I understand, is that $l_{P}=\sqrt{\dfrac{\hbar G}{c^3}}$ consists of the fundamental constants of gravity and relativistic quantum mechanics.

By the same argument $m_{P}=\sqrt{\dfrac{\hbar c}{G}}$ should be equally important, no?

What am I missing?

Best Answer

From the perspective of particle physics, you are correct, the Planck length and Planck mass are essentially equivalent concepts: the Planck mass describes a (very high) energy scale ($\sim 10^{19}$ GeV) at which new physics must emerge, just as the Planck length entails a (very short) length scale beyond which we need a new description. If we set $\hbar=c=1$ (which are really just conversion factors between units) we see that they are inverses of each other, $m_P=1/l_P$.

More precisely, if we take the Einstein-Hilbert action for gravity and expand around a flat metric $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$, where we can interpret $h_{\mu\nu}$ as the graviton field, the resulting action will have an infinite number of higher order terms suppressed by powers of the Planck mass. Roughly, we have $$\mathcal{L}_{EH} \sim \frac{1}{2} \partial h\partial h+ \frac{1}{m_P} h\partial h \partial h + \frac{1}{m_P^2} h^2\partial h \partial h + \ldots $$ (as well as terms from higher derivative corrections, which are also higher order in $1/m_P$). So we have predictive control at energies scales much less than $m_P$, where the infinite number of higher order terms can be ignored. But once we reach the Planck scale (i.e. energy scales of $m_P$ or length scales of $l_P$) the non-renormalizable effects become important and all the quantum corrections and higher order terms render the above Lagrangian equation useless, and we require a new description.