[Physics] Why is curl of current density $\nabla \times \vec{J}$ equal zero

differentiationelectromagnetismmagnetic fieldsmagnetostaticsVector Fields

I am revisiting the derivation for $\nabla \cdot \vec{B} = 0$ in magnetostatics for the field $\vec{B}(\vec{r})$ of a charge $q$ at position $\vec{0}$ with velocity $\vec{v}$. It proceeds like

\begin{align}
\nabla \cdot \vec{B}
&= \nabla \cdot \frac{\mu_0 q}{4\pi} \frac{\vec{v} \times \vec{r}}{r^3}
\propto \nabla \cdot \frac{\vec{v} \times \vec{r}}{r^3}
= \frac{\vec{r}}{r^3} \cdot \underbrace{(\nabla \times \vec{v})}_{=0} – \vec{v} \cdot \left( \nabla \times \frac{\vec{r}}{r^3}\right) \\
&= \vec{v} \cdot \left( \nabla \times \left(-\frac{\vec{r}}{r^3}\right) \right)
= \vec{v} \cdot \left( \nabla \times \nabla \frac{1}{r} \right)
= \vec{v} \cdot \vec{0} = 0
\end{align}

So far so good. The problem I have is with the step $\nabla \times \vec{v} = \vec{0}$, i.e. $\nabla \times \vec{J} = \vec{0}$. My main text discards the respective term without any comment and another derivation I looked up says this is obvious. Why does this hold? And is it really obvious? After all there is a phenomenon called circular eddy currents.

Best Answer

I think the better way to derive this is to first observe the Biot-Savart law, $$ \mathbf B(\mathbf r)=\frac{\mu_0}{4\pi}\int\mathbf J(\mathbf r')\times\frac{\hat{r}}{r^2}\,\mathrm dV'\tag{1} $$ Since $$ \frac{\hat r}{r^2}=-\nabla_r\left(\frac1r\right) $$ (your text may derive this, if not you can prove it by starting with the RHS), we can write (1) as $$ \mathbf B(\mathbf r)=-\frac{\mu_0}{4\pi}\int\mathbf J(\mathbf r')\times\nabla_r\left(\frac{1}{r}\right)\,\mathrm dV'\tag{2} $$ Since $\mathbf J$ is a function or $r'$ and not $r$, we can put it inside the parenthesis and swap the order of the cross product (i.e., $\mathbf J\times\nabla=-\nabla\times\mathbf J$), $$ \mathbf B(\mathbf r)=\frac{\mu_0}{4\pi}\int\nabla_r\times\frac{\mathbf J(r')}{r}\,\mathrm dV'\tag{3}=\nabla_r\times\frac{\mu_0}{4\pi}\int\frac{\mathbf J(r')}{r}\,\mathrm dV' $$ Then we can define the vector potential as $$ \mathbf A(\mathbf r)=\frac{\mu_0}{4\pi}\int\frac{\mathbf J(r')}{r}\,\mathrm dV' $$ To get $$ \mathbf B(\mathbf r)=\nabla\times\mathbf A(\mathbf r)\tag{4} $$ where we drop the subscript $r$ because it's implied that it's over $\mathbf r$.

That proof over, we can take the divergence of (4): $$ \nabla\cdot\mathbf B=\nabla\cdot\nabla\times\mathbf A\equiv0 $$ by the fact that the divergence of every curl is identically zero (worth the effort to prove this).

Related Question