[Physics] Why don’t marbles naturally arrange themselves like a crystal

crystalssolid-state-physics

Most solids are crystalline in nature because the energy released during the formation of ordered structure is more than that released during the formation of disordered structure such that the crystalline state is the lower energy state. So if we take different marbles in a box and shake it then shouldn't they arrange themselves in order to get to a low energy state? But we see they arrange in a disorderly way. Why do different phenomenon occur in these two cases?

Best Answer

Interaction between marbles is very similar to the hard sphere (HS) interaction model i.e. a pair-wise potential energy which is zero if spheres do not overlap and $+\infty$ elsewhere.

Hard spheres are one of the first systems studied via computer simulation and one of the first big surprise was that by increasing pressure, they are able to crystallize from a disordered fluid to an fcc crystal, in 3D, or to a triangular lattice in 2D. After the first pioneering studies the scenario has been confirmed many times and fully understood. Moreover, in the nineties, the experiments by the Pusey's group in UK have shown that the theoretical scenario is closely followed by colloidal systems designed to mimic as closely as possible a real system of HS (Pusey, P. N., & Van Megen, W. (1986). Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature, 320(6060), 340.)

It is interesting to notice that the HS crystal is stable on the base of entropic reasons. Neither attraction nor quantum mechanics are needed and the density of the coexistent solid at freezing is about 30% smaller than the close packing density (which means that in the HS crystal at the freezing point spheres collides frequently but do not touch all the time). Probably one of the most interesting things about the HS solid is that is a very nice illustration why the naïf equation entropy="spacial disorder" is wrong: the HS crystal has a higher entropy per particle than the coexisting liquid.

What can be said about marbles, taking into account HS? Although their interaction is a very good representation of the HS potential, usually they lack the dynamics underlying the behavior of a true thermodynamic system. Dissipative effects are quite strong and in a short time, without an external continuous feed of energy, the kinetic energy of marbles gets dissipated. In the very old times of the study of liquids, somebody performed experiments with a 2D system of marbles in a tray put on top of a hi fi speaker as a tool to feed kinetic energy randomly. However, without such a flux of energy, what can be observed by shaking a 2D or 3D container almost filled with marbles is that, if the system is highly disordered at the beginning, after some shaking part of the "defects" are eliminated and, at least locally, the system looks like a crystalline solid at the close packing. But this is a situation not directly related with the thermodynamic transition. It has more to do with the stability with respect to perturbations of purely mechanical equilibrium configurations. As a last comment, I would add that the dynamic behavior of marble-like particles has been and still is an active research topic in the physics of granular media.