[Physics] Why does the $\pi$-flux state have time-reversal symmetry

condensed-mattergauge-theoryresearch-levelsymmetrytime-reversal-symmetry

It's known that the $\pi$-flux state of the antiferromagnetic Heisenberg model on the square lattice is an important concept. The $\pi$-flux state is described by the (simplified) mean-field Hamiltonian $$H=t_1f_{1\sigma}^\dagger f_{2\sigma}+t_2f_{2\sigma}^\dagger f_{3\sigma}+t_3f_{3\sigma}^\dagger f_{4\sigma}+t_4f_{4\sigma}^\dagger f_{1\sigma}+H.c.$$, where $t_i=\left | t \right |e^{i\frac{\pi}{4}}(i=1,2,3,4)$, and the spin-1/2 operator is $\mathbf{S}_i=\frac{1}{2}f_i^\dagger\mathbf{\sigma}f_i$.

It's obvious that the mean-field Hamiltonian $H$ is not invariant under time-reversal operation( $T$ ), say $H\neq THT^{-1}$, and $H$ is also not $SU(2)$ gauge equivalent to the time-reversal transformed Hamiltonian $THT^{-1}$. So due to what reason, the projected spin-state $\psi_{spin}=\hat{P}\psi_{MF}$ is time-reversal invariant? Where $\psi_{MF}$ is the ground state of the mean-field Hamiltonian $H$ and $\hat{P}=\prod (2\hat{n}_i-\hat{n}_i^2)$ is the projection to the spin subspace.

Remarks: Here the effect of translation(with one lattice spacing along the $\hat{x}$ or $\hat{y}$ direction) on the Hamiltonian $H$ is the same as the effect of time-reversal $T$. Thus, if the spin-state $\psi_{spin}$ has $T$ symmetry, it must also have the translation symmetry.

Thanks in advance.

Best Answer

I don't know the article you refer to, but I believe the Hamiltonian you discuss should get a $\pi$-phase shift after one turn around a (2D) lattice cell. So I guess it should read $H=F^{\dagger}\cdot H_{\pi}\cdot F$ with

$$H_{\pi}=t\left(\begin{array}{cccc} 0 & e^{\mathbf{i}\pi/4} & 0 & e^{-\mathbf{i}\pi/4}\\ e^{-\mathbf{i}\pi/4} & 0 & e^{\mathbf{i}\pi/4} & 0\\ 0 & e^{-\mathbf{i}\pi/4} & 0 & e^{\mathbf{i}\pi/4}\\ e^{\mathbf{i}\pi/4} & 0 & e^{-\mathbf{i}\pi/4} & 0 \end{array}\right)$$

and $F^{\dagger}=\left(\begin{array}{cccc} f_{1}^{\dagger} & f_{2}^{\dagger} & f_{3}^{\dagger} & f_{4}^{\dagger}\end{array}\right)$. Then, one has

$$H_{\pi}=\dfrac{t}{\sqrt{2}}\left[\left(1+\tau_{x}\right)\otimes\eta_{x}-\left(1-\tau_{x}\right)\otimes\eta_{y}\right]$$

where the $\eta$ and $\tau$ are the usual Pauli matrices.

Time reversal symmetry operator -- when it exists -- is defined as an anti-unitary operator which commutes with the Hamiltonian. Such an operator can be defined as $T=\mathscr{K}\tau_{z}\otimes\mathbf{i}\eta_{y}$ and thus $H$ is time reversal symmetric. $\mathscr{K}$ is the anti-unitary operator $\mathscr{K}\left[\mathbf{i}\right]=-\mathbf{i}$ and thus $\mathscr{K}\left[\eta_{y}\right]=-\eta_{y}$. One verifies that $\left[H_{\pi},T\right]=0$ as it must.

Please tell me if I started with the wrong Hamiltonian.

A few words about the definition (as follow from the comment below): The time-reversal operator is defined as I did, i.e. one applies it to the Hamiltonian $H_{\pi}$, (call it the Hamiltonian density if you wish, since in my way of writing $H=F^{\dagger}\cdot H_{\pi}\cdot F$, the dots should include summation(s) over phase-space-time [delete as appropriate]). You could prefer to define the action of an operator as transforming the operators (or the wave-function). But you should not use both definitions at the same time. It is clear that you can not do both, since otherwise you transform $H=F^{\dagger}\cdot H_{\pi}\cdot F \rightarrow F^{\dagger}\cdot U^{\dagger}\cdot \left(U \cdot H_{\pi} \cdot U^{\dagger}\right) \cdot U\cdot F = H$ trivially, whatever (anti-)unitary transformation $U$ you choose. It is clear that what your are looking for is something like $H=F^{\dagger}\cdot H_{\pi}\cdot F \rightarrow F^{\dagger}\cdot U^{\dagger}\cdot H_{\pi} \cdot U\cdot F \sim H$ and you see what I just said: apply the transformation to the Hamiltonian (density) or to the fields, but not both. In condensed matter we usually choose the convention I gave to you: we transform the Hamiltonian. One of the reasons is that the operators (especially the fermionic creation/annihilation ones) are seen as encoding the statistics of the fields, whereas the Hamiltonian encodes the dynamics, and it is simple imagination to change the dynamics.

Related Question