[Physics] Why do we nondimensionalize the Schrödinger equation when solving the quantum harmonic oscillator

dimensional analysisharmonic-oscillatorquantum mechanicsschroedinger equation

I read about how to solve the Schrödinger equation for the quantum harmonic oscillator in one dimension. It started with the Schrödinger equation,
$$
\frac{p^2}{2m}\psi(x, t)+\frac{1}{2}m\omega^2x^2\psi(x, t)=\hat{E}\psi(x, t)
$$

It makes sense to me; that looks like energy conservation. Putting differential equations for the momentum operator,
$$
\frac{-\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x, t)+\frac{1}{2}m\omega^2x^2\psi(x, t)=\hat{E}\psi(x, t)
$$

Then they try to make remove the dimensions from the equation, so they replace $\hat{E}$ with a dimensionless $\epsilon$ somehow, and divide the whole expression by $\hbar$. They then start a spree of confusing substitutions which mathematically are accurate, but appear to have no physical significance. I don't understand why we do any of that. What's wrong with just staying with those differential equations and waiting for numbers which you can plug in and solve/integrate?

That source said that they're trying to simplify this equation, because it's very messy and difficult to solve, but if you only substitute and cancel terms, you are not adding any new information. So if we aren't adding information to the equations, then what's the point of making these random-looking substitutions? I don't see any significance of expressing the energy with no dimensions.

Best Answer

So if we aren't adding information to the equations, then what's the point of making these random-looking substitutions?

Those substitutions are quite helpful. Not because of the addition of new information (as you mentioned, we don't learn anything which we didn't know before), but because of the way they let us see what we already have. They also let you eyeball the system, as I like to call it, which essentially means that you can guess a lot more without resorting to computational tools.

Essentially, after making these substitutions,

  1. You can easily think about what would happen if you change the proportions between the input values (this is a general advantage of nondimensionalization)

  2. You can 'guess' possible solutions easily


Here's an explanation:

You didn't go through the substitutions, so here's a brief overview of the process of solving it. You can check each stage to make sure that you see what exactly is happening to the dimensions of the equation. Start off with the Schrödinger equation, $$\left(\frac{P^2}{2m}+\frac{1}{2}\omega^2x^2\right)\psi(x, t)=E\psi(x, t)$$ (Note that the LHS is the Hamiltonian, $\mathscr{H}=T+V=\left(\frac{P^2}{2m}+\frac{1}{2}\omega^2x^2\right)$, and this is all clearly dimensionally correct)

You're familiar with the concept of non-dimensionalizing, so I'll skim over that: take $\epsilon=\frac{E}{\hbar\omega}$, and get (after expanding your momentum operator and stuff) $$\frac{m\omega}{2\hbar}x^2\psi(x, t)-\frac{\hbar}{2m\omega}\frac{\partial^2}{\partial x^2}\psi(x, t)=\epsilon\psi(x, t)$$ Right now, there's no obvious difference between this equation and the original with $E$ in it: although it looks a bit cleaner, there's nothing trivially obvious when you look at it. So let's try another pair of substitutions, $x=\alpha u$ and $\alpha=\sqrt{\frac{\hbar}{m\omega}}$. Most books show these substitutions made one after the other, with expansions of the equation at each stage, but since the question says that they're already mathematically self-explanatory, I'll skip through to the result of applying those substitutions and simplifying stuff. You get this magically clean expression, $$u^2\psi(x, t)-\frac{\partial^2}{\partial u^2}\psi(x, t)=2\epsilon\psi(x, t)$$ Or, if I can be a bit looser with the notation, $$-\psi''+u^2\psi=2\epsilon\psi$$ and $$\psi''=(u^2-2\epsilon)\psi$$

This is obviously quite easy to solve in certain conditions. We can guess what happens if $u\rightarrow\infty$: the $\epsilon$-related terms become negligibly small, so we solve $\psi''=u^2\psi$. And that's easy enough to guess; the results are along the lines of $\psi=Au^ke^{u^2/2}$. Clearly that's not something you could achieve if you didn't have $u$ in the picture, and if you hadn't introduced $\epsilon$, it would have been sticky to figure out exactly what terms were being approximated to zero. A similar process can be followed to approximate solutions for $u\rightarrow 0$.


The next obvious advantage of removing the units is cleanness and generality of computations for different orders of magnitude. It's a common technique to assume all other units in a system to take values such that $\hbar=1$ and $c=1$. It makes a lot of calculations easier. In this case, we're setting the units of energy ($E$) as $\hbar\omega$ (just to verify, $\hbar$ has units of action, $[E\ T]$ (I'm using a nonstandard $[E]$ for energy), and $\omega$ is frequency, $[T^{-1}]$). We're also scaling the length to $\sqrt{\frac{\hbar}{m\omega}}$. Additionally, by setting these values, it's easy to make intuitive guesses about the scale of the problem (this is a more general advantage of removing dimensions, and isn't very specific to the quantum harmonic oscillator). This makes it easy to use the same equation for systems with different orders of magnitude (for example situations where the amplitude $u$ is really tiny and situations where it's huge), without loosing an understanding and 'feeling' for what's going on.