[Physics] Why can’t gauge bosons have mass

gauge-invariancemassquantum-field-theoryresearch-level

Clearly, a mass term for a vector field would render the Lagrangian not gauge-invariant, but what are the consequences of this? Gauge invariance is supposed to be crucial for the renormalisation of a vector field theory, though I have to say I'm not entirely sure why.

As far as removing unphysical degrees of freedom – why isn't the time-like mode $A_0$ a problem for massive vector bosons (and how does gauge invariance of the Lagrangian ensure that this mode is unphysical for gauge bosons)?

Best Answer

Let me anwser a closely related quenstion: Consider a U(1) gauge theory with massless gauge bosons, can any small perturbations give the gauge boson an mass.

Amazingly, the anser is NO. The masslessness of the gauge boson is topologically robust. No small perturbations can give the gauge boson an mass. For detail, see my article.

Let me make the statement more precise. Here we consider a compact U(1) gauge theory with a finite UV cutoff (such as a lattice gauge theory), that contains gapless gauge bosons at low energies. Then no small perturbations to this compact U(1) gauge theory with a finite UV cutoff can give the gauge boson an mass, even for the small perturbations that break the gauge invariance.

So the masslessness of gauge boson is a stable universal property of a quantum phase. Only a phase transition can make the gauge boson massive.