Vectors – Why Can the Cross Product of Two Vectors Be Calculated as the Determinant of a Matrix?

geometryvectors

The cross product $\vec{a} \times \vec{b}$ can be written as the determinant of the matrix:

$$\left| \begin{matrix}
\vec{i} & \vec{j} & \vec{k} \\
a_i & a_j & a_k \\
b_i & b_j & b_k
\end{matrix}\right|$$

Is there any physical significance to this matrix, or is it just some mathematical trick?

Best Answer

Is there any physical significance to this matrix

The physical (geometric) relevance to the matrix

$$\left| \begin{matrix} \vec{i} & \vec{j} & \vec{k} \\ a_i & a_j & a_k \\ b_i & b_j & b_k \end{matrix}\right|$$

with regard to the cross product $\vec{a} \times \vec{b}$ is

1: that the three vectors $\vec{i}$, $\vec{j}$, and $\vec{k}$ constitute a vector basis that spans a space which is

  • either also spanned by $\vec{a}$, $\vec{b}$, and one additional vector which is perpendicular to $\vec{a}$ as well as $\vec{b}$;

  • or, in case that vectors $\vec{a}$ and $\vec{b}$ are parallel to each other, also spanned by $\vec{a}$ and two additional (non-parallel) vectors.

2: the three basis vectors $\vec{i}$, $\vec{j}$, and $\vec{k}$ are pairwise orthogonal (perpendicular) to each other.

Therefore vectors $\vec{a}$ and $\vec{b}$ as well as the cross product vector $\vec{a} \times \vec{b}$ can be completely and uniquely expressed in terms of the corresponding components:

$\vec{a} := a_i \vec{i} + a_j \vec{j} + a_k \vec{k}$,
$\vec{b} := b_i \vec{i} + b_j \vec{j} + b_k \vec{k}$, and

$\vec{a} \times \vec{b} := \{ab\}_i \vec{i} + \{ab\}_j \vec{j} + \{ab\}_k \vec{k}$.

Finally: 3: the three basis vectors $\vec{i}$, $\vec{j}$, and $\vec{k}$ have equal magnitudes:

$| \vec{i} | = | \vec{j} | = | \vec{k} |$.

As a consequence, the "mathematical trick" of expressing the cross product vector $\vec{a} \times \vec{b}$ as the above determinant "works":

The component of cross product vector $\vec{a} \times \vec{b}$ "along/parallel to" vector $\vec{a}$ vanishes explicitly:

$$\left( a_i (a_j b_k - a_k b_j) \frac{(| \vec{i} |)^2}{| \vec{a} \times \vec{b} |} \right) + \left( a_j (a_k b_i - a_i b_k) \frac{(| \vec{j} |)^2}{| \vec{a} \times \vec{b} |} \right) + \left( a_k (a_i b_j - a_j b_i) \frac{(| \vec{k} |)^2}{| \vec{a} \times \vec{b} |} \right) = $$

$$\frac{(| \vec{i} |)^2}{| \vec{a} \times \vec{b} |} \left( a_i (a_j b_k - a_k b_j) + a_j (a_k b_i - a_i b_k) + a_k (a_i b_j - a_j b_i) \right) = 0,$$

and likewise the component of cross product vector $\vec{a} \times \vec{b}$ "along/parallel to" vector $\vec{b}$ vanishes explicitly;
i.e. cross product vector $\vec{a} \times \vec{b}$ is expressed explicitly orthogonal to both vectors $\vec{a}$ and $\vec{b}$.

And, no less important the magnitude of cross product vector $\vec{a} \times \vec{b}$ "comes out correctly", i.e. such that

$$ \Big( | \vec{a} \times \vec{b} | \Big)^2 := $$ $$ \left( (a_j b_k - a_k b_j)^2 + (a_k b_i - a_i b_k)^2 + (a_i b_j - a_j b_i)^2 \right) ~ (| \vec{i} |)^4 = $$ $$ \left( (a_i^2 + a_j^2 + a_k^2) ~ (b_i^2 + b_j^2 + b_k^2) \right) ~ (| \vec{i} |)^4 - \left( (a_i b_i + a_j b_j + a_k b_k) ~ (| \vec{i} |)^2 \right)^2 := $$ $$ \Big( | \vec{a} | \Big)^2 \Big( | \vec{b} | \Big)^2 - | \vec{a} | ~ | \vec{b} | ~ a_b ~ b_a,$$

where $b_a$ denotes the component of vector $\vec{b}$ "along/parallel to" vector $\vec{a}$, and $a_b$ denotes the component of vector $\vec{a}$ "along/parallel to" vector $\vec{b}$.