Nuclear Physics – Why Are Protons And Neutrons The Right Degrees Of Freedom Of Nuclei?

nuclear-physics

This question may sound stupid but why do we visualize nuclei as composed of a bunch of neutrons and protons?
Wouldn't the nucleons be too close together to be viewed as different particles? Isn't the whole nucleus just a complicated low energy state of QCD?

Best Answer

This is basically a matter of energy scales. By analogy, you could ask why we don't take into account nuclear structure when we talk about chemistry. The answer is that the eV energy scale of chemistry is mismatched with the MeV energy scale of nuclear structure.

Nuclear matter has two phases. One is the phase we normally see, and the other is a quark-gluon plasma. The phase transition happens at a temperature on the order of 100 GeV per nucleon (at standard nuclear densities). Below the temperature of the phase transition, the quarks are strongly correlated, and those correlated groups behave in a way that's very similar to free neutrons and protons. To the extent that they don't quite have those properties, often we can subsume the discrepancies within adjustments to the parameters of the model. It's helpful in terms of practical computation that the fictitious neutrons and protons are nonrelativistic, which makes the theory much more tractable than QCD. If there are small relativistic effects, because the nucleons are moving at a few percent of $c$, these can also be subsumed within adjustments to the parameters.

By the way, it is actually possible to consider larger clusters to be the relevant degrees of freedom for nuclear structure. There is a model called the interacting boson approximation (IBA, also known as the interacting boson model, IBM), in which pairs of nucleons coupled to spin 0 or 1 are considered the degrees of freedom. It does pretty well in phenomonologically fitting the properties of many nuclei that are intractable in other models.

In a similar vein, there are alpha cluster models and ideas like explaining alpha decay in terms of preformation of an alpha particle, which then tunnels out through the Coulomb barrier. Pictures like these go back to the 1940's, and have considerable utility and explanatory power, although they can't really be microscopically correct, because they violate the Pauli exclusion principle.