[Physics] Which exact solutions of the classical Yang-Mills equations are known

classical-field-theorygauge-theoryresearch-levelyang-mills

I'm interested in the pure gauge (no matter fields) case on Minkowski spacetime with simple gauge groups.
It would be nice if someone can find a review article discussing all such solutions

EDIT: I think these are relevant to the physics of corresponding QFTs in the high energy / small scale regime. This is because the path integral for a pure gauge Yang-Mills theory is of the form

$$\int \exp\left(\frac{iS[A]}{ \hbar}\right) \, \mathcal{D}A$$

In high energies we have the renormalization group behavior $g \to 0$ (asymptotic freedom) which can be equivalently described by fixing $g$ and letting $\hbar \to 0$.

EDIT: For the purpose of this question, an "exact" solution is a solution in closed form modulo single variable functions defined by certain ODEs and initial / boundary conditions.

Best Answer

Wu and Yang (1968) found a static solution to the sourceless SU(2) Yang-Mills equations, (please, see the following two relatively recent articles containing a rather detailed description of the solution: Marinho, Oliveira, Carlson, Frederico and Ngome The solution constitutes of a generalization of the Abelian Dirac monopole. The vector potential is given by:

$A_i^a=g \epsilon_{iaj}x^j\frac{f(r)}{r^2}$

where $f(r)$ satisfies a nonlinear radial equation (The Wu-Yang equation) obtained from the substitution this ansatz into the Yang-Mills field equations.The Wu-Yang monopole has a singularity at the origin, in which the magnetic energy density diverges. The first article contains references to phenomenological works involving the Wu-Yang monopole.

Related Question