Visible Light – What Actually Constitutes White Light?

atomic-physicsspectroscopyvisible-lightwave-particle-duality

I was studying spectra and suddenly a question popped up relating to the absorption spectra.
When we say that the electron absorbs certain wavelengths(photons) so we are implying that white light is a collection of infinite photons of many many wavelengths and the electron simply eats it.

My question is what exactly is white light and how is it different from the monochromatic ones. Is it a bag of infinite photons of different wavelengths or is it a single photon? If it is a single photon then how can electron take up a photon from single photon and still the photon continues with other wavelengths?

Best Answer

There is some confusion of terms in the question.

  1. A photon is an elementary particle in the standard model of particle physics, see table. Its mass is equal to zero, it is a point particle, and its energy is equal to $h*ν$, where $h$ is planck's constant, $ν$ is the frequency for the classical electromagnetic wave, light, that emerges from a large number of such photons. As far as the photon is concerned the term "frequency" has no meaning other to identify its energy.

  2. the electron is also a point particle in the same table with a fixed invariant mass of 0.51099895 MeV, which is invariant. In no way a free electron can absorb a photon, a photon can scatter off an electron, its energy becoming less. Absorption of photons can only happen in scatters of photons with bound electrons in energy levels, in atoms, molecules and lattices . It is the whole atom that absorbs the photon, the electron changing energy levels due to the absorption. The energy levels have a width, and that is reflected in the ability of atoms to absorb photons with a $Δ(E)$ in energy, which width is directly related to the frequency of the light of multitudes of photons.

  3. The colors of the spectrum are not one to one with the colors our eyes have defined. The spectrum from a crystal have specific frequencies that we have named with the color we see, and there, there is a one to one correspondence, frequency to color. Note there is no "white" in the spectrum:

visible spectrum

But our eyes can see the same named colors with a combination of light frequencies, called color perception:

colorperc

The color perceived at point T , comes from a combination of frequencies, and many different pairs give the same perceived color. White in this plot is around the achromatic point. Please read the link for details.

In summary, white is not a color in the visible light spectrum, many frequencies could make up the perception of white color, which means that photons of a large variation in energies make up the white color.

Is it a bag of infinite photons of different wavelengths

The figure shows how the frequencies combine to give the perception of white. One needs many photons for our eyes to be able to perceive them, but even a few hundreds can give a signal to the brain, this link might interest you.

or is it a single photon.

A single photon cannot give the perception of white.

Hope this helps.

Edit: Since comments might disappear if there are too many, I copy here a significant comment by @PhysicsTeacher:

but it should be noted that when speaking generally of "white light" one often means light that contains all the spectrum to a significant degree, rather than just a combination of a few frequencies. This is because the context is often that of illumination, and illumination with a weird and tiny frequency combination will result in distorted, "artificial" colors ratther than the "real" colors (i.e. the colors seen in daylight). –

Related Question