[Physics] the 4-dimensional matrix representation of rotation operator

angular momentumquantum mechanicsquantum-spinrepresentation-theoryrotation

The rotation operator is $$\exp\left(-i\frac{\theta}{2}\boldsymbol{J}\cdot\hat{\boldsymbol{n}}\right).$$

  1. If $\boldsymbol{\sigma}$ is the Pauli matrix, the operator can be written as a matrix form $$\boldsymbol{1}\cos(\phi/2)-i\boldsymbol{\sigma}\cdot\hat{\boldsymbol{n}}\sin(\phi/2).$$

  2. But when $J$ is the spin-3/2 operator, $J$ is 4-dimensional. Is there a matrix representation of operator $\exp\left(-i\frac{\theta}{2}\boldsymbol{J}\cdot\hat{\boldsymbol{n}}\right)$? I find that when $\{J_x,J_y\}\neq0$ for spin-3/2, not like Pauli matrices.

  3. What is the case when $J$ is spin-1 operator?

Best Answer

There is a general expression in my article A Compact Formula for Rotations as Spin Matrix Polynomials, SIGMA 10 (2014), 084, to the effect that, e.g., for the doublet, \begin{gather*} e^{i(\theta/2)(\hat{\boldsymbol{n}}\cdot\boldsymbol{\sigma})}=I_{2}\cos{\theta/2}+i(\hat{\boldsymbol{n}}\cdot\boldsymbol{\sigma})\sin{\theta/2}, \end{gather*} and the triplet, $j=1$, so $J_{3}=\mathrm{diag}(1,0,-1)$, \begin{gather*} e^{i\theta(\hat{\boldsymbol{n}}\cdot\boldsymbol{J})}=I_{3}+i(\boldsymbol{\hat {n}}\cdot\boldsymbol{J})\sin{\theta}+(\hat{\boldsymbol{n}}\cdot\boldsymbol{J})^{2}(\cos\theta-1) \\ \phantom{e^{i\theta(\hat{\boldsymbol{n}}\cdot\boldsymbol{J})}} =I_{3}+(2i\hat{\boldsymbol{n}}\cdot\boldsymbol{J}\sin(\theta/2))\cos (\theta/2)+\tfrac{1}{2}(2i\hat{\boldsymbol{n}}\cdot\boldsymbol{J}\sin (\theta/2))^{2}. \end{gather*}

For the quartet, $j=3/2$, \begin{gather} e^{i \theta (\hat{\boldsymbol{n}}\cdot\boldsymbol{J})} = I_4 \cos (\theta/2)\left(1+\tfrac{1}{2}\sin^2 (\theta/2)\right)+(2i \hat{\boldsymbol{n}}\cdot\boldsymbol{J} \sin (\theta/2))\left(1+\tfrac{1}{6} \sin^2 (\theta/2) \right) \nonumber \\ \phantom{e^{i \theta (\hat{\boldsymbol{n}}\cdot\boldsymbol{J})}=}{} +\frac{1}{2!} \bigl (2i \hat{\boldsymbol{n}}\cdot\boldsymbol{J}\sin (\theta/2) \bigr)^2 \cos (\theta/2)+\frac {1}{3!} \bigl (2i \hat{\boldsymbol{n}}\cdot\boldsymbol{J}\sin (\theta/2) \bigr)^3. \label{quartet} \end{gather}

For the quintet, $j=2$, \begin{gather*} e^{i \theta(\hat{\boldsymbol{n}}\cdot\boldsymbol{J})} = I_5+(2i \hat{\boldsymbol{n}}\cdot\boldsymbol{J} \sin(\theta/2)) \cos(\theta/2)\left(1+\tfrac{2}{3}\sin^2(\theta/2)\right) \\ \phantom{e^{i \theta (\hat{\boldsymbol{n}}\cdot\boldsymbol{J})}=}{} +\frac{1}{2!} {(2i \hat{\boldsymbol{n}}\cdot\boldsymbol{J} \sin(\theta/2))^2}\left(1+\tfrac{1}{3} \sin^2 (\theta/2)\right) \\ \phantom{e^{i \theta (\hat{\boldsymbol{n}}\cdot\boldsymbol{J})}=}{} +\frac{1}{3!} {(2i \hat{\boldsymbol{n}}\cdot\boldsymbol{J} \sin(\theta/2))^3} \cos(\theta /2) +\frac{1}{4!} (2i \hat{\boldsymbol{n}}\cdot\boldsymbol{J} \sin (\theta/2))^4. \end{gather*}

For the sextet, $j=5/2$, \begin{gather*} e^{i \theta(\hat{\boldsymbol{n}}\cdot\boldsymbol{J})} = I_6 \cos(\theta/2)\left(1+ \tfrac{1}{2} \sin^2 (\theta/2+\tfrac{3}{8} \sin^4 (\theta/2)\right) \\ \phantom{e^{i \theta(\hat{\boldsymbol{n}}\cdot\boldsymbol{J})} =}{} +(2i \hat{\boldsymbol{n}}\cdot\boldsymbol{J} \sin(\theta /2))\left(1+\tfrac{1}{6}\sin^2(\theta/2) +\tfrac{3}{40}\sin^4(\theta /2)\right) \\ \phantom{e^{i \theta(\hat{\boldsymbol{n}}\cdot\boldsymbol{J})} =}{} +\frac{1}{2!} {(2i \hat{\boldsymbol{n}}\cdot\boldsymbol{J} \sin(\theta/2))^2} \cos(\theta /2) \left(1+\tfrac{5}{6}\sin^2(\theta/2)\right) \\ \phantom{e^{i \theta(\hat{\boldsymbol{n}}\cdot\boldsymbol{J})} =}{} +\frac{1}{3!} {(2i \hat{\boldsymbol{n}}\cdot\boldsymbol{J} \sin (\theta/2))^3}\left(1+\tfrac{1}{2}\sin^2(\theta/2) \right) \\ \phantom{e^{i \theta(\hat{\boldsymbol{n}}\cdot\boldsymbol{J})} =}{} +\frac{1}{4!} {(2i \hat{\boldsymbol{n}}\cdot\boldsymbol{J} \sin(\theta/2))^4}\cos(\theta /2) +\frac{1}{5!} {(2i \hat{\boldsymbol{n}}\cdot\boldsymbol{J} \sin (\theta/2))^5}. \end{gather*}

etc...

There is a simple pattern and compact formula for arbitrary spin detailed in that paper.

Related Question