[Physics] Surface integral of Poynting vector around static sources

electromagnetismpoynting-vector

Consider fields $\rho \left( \vec{r} \right)$, $\vec{J} \left( \vec{r} \right)$, $\vec{E} \left( \vec{r} \right)$ and $\vec{B} \left( \vec{r} \right)$ in $\mathbb{R}^3$, with their usual meaning as per Electrodynamics.

Take any finite volume $V_s$ outside of which $\vec{J}\left(\vec{r}\right)$ and $\rho\left(\vec{r}\right)$ are $0$. Then, we know that $\vec{E}\left(\vec{r}\right) $ and $\vec{B}\left(\vec{r}\right) $ for any $\vec{r}$ are as follows:

$$
\vec{E} \left( \vec{r} \right) =
\frac{1}{4\pi \epsilon_0}
\iiint_{V_s}
\frac{\rho\left(\vec{r}_s\right)}{\left|\vec{r}-\vec{r}_s\right|^3}
\left(\vec{r}-\vec{r}_s\right)
\space dV\left(\vec{r}_s\right)
$$
$$
\vec{B} \left( \vec{r} \right) =
\frac{\mu_0}{4\pi}
\iiint_{V_s}
\frac{\vec{J}\left(\vec{r}_s\right)}{\left|\vec{r}-\vec{r}_s\right|^3}
\times \left(\vec{r}-\vec{r}_s\right)
\space dV\left(\vec{r}_s\right)
$$
Now my question is, is it possible to mathematically prove that the following surface integral will always evaluate to zero? If so, what is the proof? (To clarify, $\partial V_s$ is the bounding surface of the volume $V_s$ mentioned earlier)

$$
\frac{1}{\mu_0} \oint_{\partial V_s} \left(\vec{E}\left(\vec{r}\right) \times \vec{B}\left(\vec{r}\right)\right)\cdot d\vec{S}\left(\vec{r}\right)
$$
Motivation: I'm looking for proof that time invariant sources (static charges and constant currents confined to a volume) cannot radiate any energy, and I'm trying to do that without invoking the Hertzian dipole and Fourier analysis.

Thanks…

Update

As pointed out below, since $\vec{E}$ and $\vec{B}$ are time invariant, applying Poynting's theorem this boils down to proving that the following volume integral is zero:
$$
– \iiint_{V_s}
\left(
\vec{J}\left(\vec{r}\right)
\cdot
\vec{E}\left(\vec{r}\right)
\right)
\space dV\left(\vec{r}\right)
$$
So can this be proved, given that $\vec{J}$, $\vec{E}$, $\vec{B}$ and $\rho$ are all time invariant, beyond the trivial cases of $\vec{J} = 0$, $\vec{E} = 0$ or $\vec{E} \perp \vec{J}$ for all $\vec{r} \in V_s$?

Or, if this can't be proved, is there a counterexample?

Thanks…

Best Answer

So, as noted, we use Poynting's theorem to get: $$\frac{1}{\mu_0} \oint_{\partial V} (\vec{E} \times \vec{B}) \cdot d\vec{S} = -\int_V \vec{E} \cdot \vec{J} dV$$ [The static version of Poynting's theorem is just: divergence theorem, $\nabla \cdot (\vec{E} \times \vec{B}) = \vec{B} \cdot (\nabla \times \vec{E}) - \vec{E} \cdot (\nabla \times \vec{B})$, then $\nabla \times \vec{E} = 0$ and $\nabla \times\vec{B} = \mu_0\vec{J}$]

The electric field is just the negative gradient of electric potential. We can use integration by parts in higher dimensions:

$$-\int_V \vec{E}\cdot\vec{J} dV = \int_V (\nabla \phi) \cdot \vec{J} dV = \oint_{\partial V} \phi \vec{J} \cdot d\vec{S} - \int_V \phi(\nabla \cdot \vec{J}) dV$$

The current density doesn't diverge. So it's just the first term, basically, the surface integral of voltage times current.

Of course your boundary condition says there's no current out of the surface, still, the previous statement holds in static situations even without that boundary condition.

Related Question