Geometric Optics – Snell’s Law in Vector Form Explained

geometric-opticsrefractionvectors

Snell's law of refraction at the interface between 2 isotropic media is given by the equation:
\begin{equation}
n_1 \,\text{sin} \,\theta_1 = n_2 \, \text{sin}\,\theta_2
\end{equation}

where $\theta_1$ is the angle of incidence and $\theta_2$ the angle of refraction. $n_1$ is the refractive index of the optical medium in front of the interface and $n_2$ is the refractive index of the optical medium behind the interface.

How can this be expressed in vector form:
\begin{equation}
n_1(\textbf{i} \times \textbf{n}) = n_2 (\textbf{t} \times \textbf{n})
\end{equation}

where $\textbf{i}(i_\text{x}, i_\text{y}$ and $i_\text{z})$ and $\textbf{t}(t_\text{x}, t_\text{y}, t_\text{z})$ are the unit directional vector of the incident and transmitted ray respectively. $\textbf{n}(n_\text{x}, n_\text{y}, n_\text{n})$ is the unit normal vector to the interface between the two media pointing from medium 1 with refractive index $n_1$ into medium 2 with refractive index $n_2$.

Further more how can the Snell's law of refraction be expressed$^\text{1}$ in the following way?
\begin{equation}
t = \mu \textbf{i} + \textbf{n}\sqrt{1- \mu^2[1-(\textbf{ni})^2]} – \mu \textbf{n}(\textbf{ni})
\end{equation}

Here $\mu = \dfrac{n_1}{n_2}$ and $\textbf{n}\textbf{i}= n_{\text{x}} i_{\text{x}} + n_{\text{y}}i_{\text{y}} + n_{\text{z}} i_{\text{z}}$ denotes the dot
(scalar) product of vectors $\textbf{n}$ and $\textbf{i}$.

References:

  1. Antonín Mikš and Pavel Novák, Determination of unit normal vectors of aspherical surfaces given unit directional vectors of incoming and outgoing rays: comment, 2012 Optical Society of America, page 1356

Best Answer

Let a unit vector $\;\mathbf{n}=(\rm n_1,n_2,n_3)\,, \Vert\mathbf{n}\Vert=1$. Any vector $\;\mathbf{r}\;$ could be decomposed in two components with respect to $\;\mathbf{n}\;$, see Figure-01 in the bottom \begin{equation} \mathbf{r}=\mathbf{r}_\|+\mathbf{r}_\bot \tag{01}\label{01} \end{equation} one parallel and the other normal to axis $\mathbf{n}$ respectively \begin{align} \mathbf{r}_\| &=\left(\mathbf{n}\boldsymbol{\cdot}\mathbf{r}\right)\mathbf{n} \tag{02.1}\label{02.1}\\ \mathbf{r}_\bot &=\left(\mathbf{n}\boldsymbol{\times}\mathbf{r}\right)\boldsymbol{\times}\mathbf{n}= \mathbf{r}-(\mathbf{n}\boldsymbol{\cdot}\mathbf{r})\mathbf{n} \tag{02.2}\label{02.2} \end{align} that is \begin{equation} \mathbf{r}=\left(\mathbf{n}\boldsymbol{\cdot}\mathbf{r}\right)\mathbf{n}+\left(\mathbf{n}\boldsymbol{\times}\mathbf{r}\right)\boldsymbol{\times} \mathbf{n} \tag{03}\label{03} \end{equation} The vectors $\;\mathbf{t},\mathbf{i}\;$ are decomposed as follows \begin{equation} \mathbf{t}=\left(\mathbf{n}\boldsymbol{\cdot}\mathbf{t}\right)\mathbf{n}+\left(\mathbf{n}\boldsymbol{\times}\mathbf{t}\right)\boldsymbol{\times} \mathbf{n} \tag{04}\label{04} \end{equation} \begin{equation} \mathbf{i}=\left(\mathbf{n}\boldsymbol{\cdot}\mathbf{i}\right)\mathbf{n}+\left(\mathbf{n}\boldsymbol{\times}\mathbf{i}\right)\boldsymbol{\times}\mathbf{n} \tag{05}\label{05} \end{equation} Now, Snell's Law is expressed as \begin{equation} \left(\mathbf{n}\boldsymbol{\times}\mathbf{t}\right)=\mu\left(\mathbf{n}\boldsymbol{\times}\mathbf{i}\right) \tag{06}\label{06} \end{equation} see Figure-02 in the bottom.

Equation \eqref{04} combined with \eqref{05} and \eqref{06} yields \begin{equation} \mathbf{t}=\left(\mathbf{n}\boldsymbol{\cdot}\mathbf{t}\right)\mathbf{n}+\mu\left[\mathbf{i}-\left(\mathbf{n}\boldsymbol{\cdot}\mathbf{i}\right)\mathbf{n}\right] \tag{07}\label{07} \end{equation} Taking norms in \eqref{07} and since the vector $\;\left(\mathbf{n}\boldsymbol{\cdot}\mathbf{t}\right)\mathbf{n}\;$ is normal to the vector $\;\left[\mathbf{i}-\left(\mathbf{n}\boldsymbol{\cdot}\mathbf{i}\right)\mathbf{n}\right]\;$ \begin{equation} \Vert\mathbf{t}\Vert^2=\left(\mathbf{n}\boldsymbol{\cdot}\mathbf{t}\right)^2+\mu^2\Vert\mathbf{i}-\left(\mathbf{n}\boldsymbol{\cdot}\mathbf{i}\right)\mathbf{n}\Vert^2 \tag{08}\label{08} \end{equation} or \begin{equation} 1=\left(\mathbf{n}\boldsymbol{\cdot}\mathbf{t}\right)^2+\mu^2\left[1-\left(\mathbf{n}\boldsymbol{\cdot}\mathbf{i}\right)^2\right] \tag{09}\label{09} \end{equation} so \begin{equation} \left(\mathbf{n}\boldsymbol{\cdot}\mathbf{t}\right)=\pm\sqrt{1-\mu^2\left[1-\left(\mathbf{n}\boldsymbol{\cdot}\mathbf{i}\right)^2\right]} \tag{10}\label{10} \end{equation} Since the angle between $\;\mathbf{n},\mathbf{t}\;$ is less than $\;\pi/2\;$ we keep the plus sign in \eqref{10} and \eqref{07} yields finally \begin{equation} \mathbf{t}=\sqrt{1-\mu^2\left[1-\left(\mathbf{n}\boldsymbol{\cdot}\mathbf{i}\right)^2\right]}\mathbf{n}+\mu\left[\mathbf{i}-\left(\mathbf{n}\boldsymbol{\cdot}\mathbf{i}\right)\mathbf{n}\right] \tag{11}\label{11} \end{equation}


enter image description here


enter image description here

Related Question