Quantum Mechanics – Relation Between Spin 1 Representation, Angular Momentum, and $SO(3)$

angular momentumgroup-representationsgroup-theoryquantum mechanicsrotation

This is a naive question. It occurred to me while studying in detail the the Spin 1 angular momentum matrices.

The generators of $SO(3)$ are

$J_x=
\begin{pmatrix}
0&0&0 \\
0&0&-1 \\
0&1&0
\end{pmatrix} \hspace{1cm} J_y=\begin{pmatrix}
0&0&1 \\
0&0&0 \\
-1&0&0
\end{pmatrix} \hspace{1cm} J_z= \begin{pmatrix}
0&-1&0 \\
1&0&0 \\
0&0&0
\end{pmatrix}
$

And the Spin 1 generators are

$J_x= \dfrac{1}{2}
\begin{pmatrix}
0&\sqrt{2}&0 \\
\sqrt{2}&0&\sqrt{2} \\
0&\sqrt{2}&0
\end{pmatrix} \hspace{1cm} J_y= \dfrac{1}{2}\begin{pmatrix}
0&-i\sqrt{2}&0 \\
i\sqrt{2}&0&-i\sqrt{2} \\
0&\sqrt{2}&0
\end{pmatrix} \hspace{1cm} J_z= \begin{pmatrix}
1&0&0 \\
0&0&0 \\
0&0&-1
\end{pmatrix}
$

Why is the Spin 1 representation generators different from the $SO(3)$ generators if both concern rotations in 3D space and both are $3×3$ matrices? Is there a relation between them?

Best Answer

The two representations are unitarily equivalent to each other, except for an overall factor of $i$.

To be clear, I'll write $J$ and $\tilde J$ for the generators in the two different representations. One representation is $$ J_x = \left( \begin{matrix} 0&0&0\\ 0&0&-1 \\ 0&1&0\end{matrix} \right) \hskip1cm J_y = \left( \begin{matrix} 0&0&1\\ 0&0&0 \\ -1&0&0\end{matrix} \right) \hskip1cm J_z = \left( \begin{matrix} 0&-1&0\\ 1&0&0 \\ 0&0&0\end{matrix} \right) $$ and the other is $$ \tilde J_x = \frac{1}{\sqrt{2}}\left( \begin{matrix} 0&1&0\\ 1&0&1 \\ 0&1&0\end{matrix} \right) \hskip1cm \tilde J_y = \frac{i}{\sqrt{2}}\left( \begin{matrix} 0&-1&0\\ 1&0&-1 \\ 0&1&0\end{matrix} \right) \hskip1cm \tilde J_z = \left( \begin{matrix} 1&0&0\\ 0&0&0 \\ 0&0&-1\end{matrix} \right). $$ The $J$s are anti-hermitian and $\tilde J$s are hermitian. That's just a matter of convention, because we can multiply the $J$s by $i$ to make them hermitian. The unitary matrix $$ U = \frac{1}{\sqrt{2}} \left( \begin{matrix} 1&0&-1\\ i&0&i \\ 0&-\sqrt{2}&0\end{matrix} \right) $$ satisfies $$ i\,J_x U = U\tilde J_x \hskip2cm i\,J_y U = U\tilde J_y \hskip2cm i\,J_z U = U\tilde J_z, $$ which proves that the two representations are equivalent except for the overall factor of $i$.

These identities could be written in the form $i\,J=U\tilde J U^{-1}$ instead, but they way I wrote them above makes them easier to check.

Related Question