[Physics] Non-zero components of the Riemann tensor for the Schwarzschild metric

curvaturedifferential-geometrygeneral-relativityhomework-and-exercisesmetric-tensor

Can anyone tell me which are the non-zero components of the Riemann tensor for the Schwarzschild metric?
I've been searching for these components for about 2 weeks, and I've found a few sites, but the problem is that each one of them shows different components, in number and form. I´ve calculated a few components but I don't know if they are correct. I'm using the form of the metric:

$$ds^2 = \left(1-\frac{2m}{r}\right)dt^2 + \left(1-\frac{2m}{r}\right)^{-1} dr^2 + r^2 d\theta^2 + r^2\sin^2\theta \, d\phi^2.$$

Best Answer

According to Mathematica, and assuming I haven't made any silly errors typing in the metric, I get the non-zero components of $R^\mu{}_{\nu\alpha\beta}$ to be:

{1, 2, 1, 2} -> (2 G M)/(r^2 (-2 G M + c^2 r)),
{1, 2, 2, 1} -> -((2 G M)/(r^2 (-2 G M + c^2 r))),
{1, 3, 1, 3} -> -((G M)/(c^2 r)),
{1, 3, 3, 1} -> (G M)/(c^2 r),
{1, 4, 1, 4} -> -((G M Sin[\[Theta]]^2)/(c^2 r)),
{1, 4, 4, 1} -> (G M Sin[\[Theta]]^2)/(c^2 r),
{2, 1, 1, 2} -> (2 G M (-2 G M + c^2 r))/(c^4 r^4),
{2, 1, 2, 1} -> -((2 G M (-2 G M + c^2 r))/(c^4 r^4)),
{2, 3, 2, 3} -> -((G M)/(c^2 r)),
{2, 3, 3, 2} -> (G M)/(c^2 r),
{2, 4, 2, 4} -> -((G M Sin[\[Theta]]^2)/(c^2 r)),
{2, 4, 4, 2} -> (G M Sin[\[Theta]]^2)/(c^2 r),
{3, 1, 1, 3} -> (G M (2 G M - c^2 r))/(c^4 r^4),
{3, 1, 3, 1} -> (G M (-2 G M + c^2 r))/(c^4 r^4),
{3, 2, 2, 3} -> (G M)/(r^2 (-2 G M + c^2 r)),
{3, 2, 3, 2} -> (G M)/(r^2 (2 G M - c^2 r)),
{3, 4, 3, 4} -> (2 G M Sin[\[Theta]]^2)/(c^2 r),
{3, 4, 4, 3} -> -((2 G M Sin[\[Theta]]^2)/(c^2 r)),
{4, 1, 1, 4} -> (G M (2 G M - c^2 r))/(c^4 r^4),
{4, 1, 4, 1} -> (G M (-2 G M + c^2 r))/(c^4 r^4),
{4, 2, 2, 4} -> (G M)/(r^2 (-2 G M + c^2 r)),
{4, 2, 4, 2} -> (G M)/(r^2 (2 G M - c^2 r)),
{4, 3, 3, 4} -> -((2 G M)/(c^2 r)),
{4, 3, 4, 3} -> (2 G M)/(c^2 r),