[Physics] Lorentz invariance of the action for free relativistic particle

lagrangian-formalismspecial-relativity

I tried to check the Lorentz invariance of the standard special relativity action for free particle directly: ($c=1$)

$$
S=\int L dt=-m\int\sqrt{1-v^{2}}dt
$$

Lorentz boost:

$$ dt=\frac{dt^{'}+udx^{'}}{\sqrt{1-u^{2}}}$$, $$dx=\frac{udt^{'}+dx^{'}}{\sqrt{1-u^{2}}}$$, $$v=\frac{dx}{dt}=\frac{u+v^{'}}{1+uv^{'}}$$

Substitute these expressions into the action:

$$
S^{'}=-m\int \sqrt{1-\left(\frac{u+v^{'}}{1+uv^{'}} \right)^{2}} dt=-\int \sqrt{1-\left(\frac{u+v^{'}}{1+uv^{'}} \right)^{2}} \left(\frac{dt^{'}+udx^{'}}{\sqrt{1-u^{2}}}\right)
$$

$$
S^{'}=-m\int \left(\frac{\sqrt{1-\left(\frac{u+v^{'}}{1+uv^{'}} \right)^{2}}}{\sqrt{1-u^{2}}} \right)dt^{'}-m\int \left(\frac{u\sqrt{1-\left(\frac{u+v^{'}}{1+uv^{'}} \right)^{2}}}{\sqrt{1-u^{2}}}\right)dx^{'}
$$

But I know that action of this type is invariant under lorentz transformations, so we want to get that
$$
S^{'}=-m\int \sqrt{(1-v'^{2})} dt^{'}
$$

But it doesnt seem to me that these expressions for action are equal. So I'm confused.
Maybe there is a mistake in my calculations?

Best Answer

joshphysics's answer was excellent, and I'd like to draw attention to another aspect of the question.

Your action,

$S=-m\int\sqrt{1-u^{2}}dt$

Can be written:

$S=-m\int\sqrt{(dt)^{2}-(udt)^{2}}$

$=-m\int\sqrt{(dt)^{2}-(dx)^{2}} = -m\int ds$

And the transformed action $S' = -m \int ds'$.

So, for the action to be Lorentz invariant, it suffices to show that the interval, $s$, is Lorentz invariant, i.e. $s=s'$:

Say $s^2 = t^2 - x^2$; $x' = \gamma (x-vt)$; $t' = \gamma (t-vx)$; and finally $\gamma = (1-v^2)^{-1/2}$. Then,

$(s')^2 = (t')^2 - (x')^2$

$=\gamma^2((t-vx)^2 - (x-vt)^2) = \gamma^2(t^2 +v^2x^2 - x^2+ -v^2t^2)$

(Cross terms cancel)

$= (1-v^2)^{-1}(t^2(1-v^2) -x^2(1-v^2)) = t^2-x^2$

So $ds'=ds$, and consequently your action is Lorentz invariant.

Related Question