[Physics] Levi Civita identity

homework-and-exercisestensor-calculus

I've been trying to use the following identity (provided by wikipedia)

$$\epsilon^{i_1…i_n}\epsilon_{j_1…j_n} = \delta_{j_1…j_n}^{i_1…i_n} \equiv n!\delta_{[j_1}^{i_1}…\delta_{j_n]}^{i_n}$$

To prove the following relation in Peskin & Schroeder (p.134)
$$\epsilon^{\alpha\beta\mu\nu}\epsilon_{\alpha\beta\rho\sigma} = -2({\delta^\mu}_\rho {\delta^\nu}_\sigma – {\delta^\mu}_\sigma {\delta^\nu}_\rho)$$

This was stated without proof, as you do. They did however say that it could be proven by "appealing to symmetry arguments, then evaluating one special case to determine the overall constant".

Ideally I would like to find a general formula for the product of two $d$ dimensional Levi Civita symbols with $n$ contracted indices in addition to the proof of the first equation, but any help is greatly appreciated.

If anyone knows any sources that go into this in detail and actually provide proofs, I would be very grateful.

Best Answer

Following the method in L&L vol. 2 ch. 1, the left-hand side $$\varepsilon^{\alpha \beta \mu \nu} \varepsilon_{\alpha \beta \rho \sigma}$$ is a product of a pseudo-tensor, which is invariant under Lorentz transformations up to a factor of a determinant, and a pseudo-tensor which transforms under the inverse determinant.

This tells us that the right-hand side has to be an invariant tensor and so must be constructed from Kronecker delta's.

The right hand side must also be anti-symmetric in $\mu,\nu$ and anti-symmetric in $\rho,\sigma$ so that on general grounds $$ \varepsilon^{\alpha \beta \mu \nu} \varepsilon_{\alpha \beta \rho \sigma} = - A (\delta^{\mu}_{\rho} \delta^{\nu}_{\sigma} - \delta^{\mu}_{\sigma} \delta^{\nu}_{\rho})$$ must hold, where the minus sign is due to the Minkowski metric, and the factor $A=2$ is fixed by the requirement that $\varepsilon^{\mu \nu \rho \sigma} \varepsilon_{\mu \nu \rho \sigma} = - 4!$ holds, so setting $ - A (\delta^{\mu}_{\mu} \delta^{\nu}_{\nu} - \delta^{\mu}_{\nu} \delta^{\nu}_{\mu}) = - 4!$ gives $A(16 - 4) = 24$ or $A = 2$.

More generally, the same thinking tells us that the product $\varepsilon^{\alpha \beta \mu \nu} \varepsilon_{\alpha \beta \rho \sigma}$ must be an anti-symmetric combination of Kronecker delta's up to an overall normalization factor, where the normalization factor must respect the fact that $\varepsilon^{\mu \nu \rho \sigma} \varepsilon_{\mu \nu \rho \sigma} = - 4!$ should hold, but $\delta^{\mu \nu \rho \sigma}_{\alpha \beta \gamma \delta}$ is an anti-symmetric combination of Kronecker delta's such that $\delta^{\mu \nu \rho \sigma}_{\mu \nu \rho \sigma} = 4!$, and so $$ \varepsilon^{\alpha \beta \mu \nu} \varepsilon_{\alpha \beta \rho \sigma} = - \delta^{\mu \nu \rho \sigma}_{\alpha \beta \rho \sigma}$$ must hold. Thus we can work out contractions like $\varepsilon^{\alpha \beta \mu \nu} \varepsilon_{\alpha \beta \rho \sigma} = - \delta^{\alpha \beta \mu \nu}_{\alpha \beta \rho \sigma}$ directly \begin{align*} \varepsilon^{\alpha \beta \mu \nu} \varepsilon_{\alpha \beta \rho \sigma} &= - \delta^{\alpha \beta \mu \nu}_{\alpha \beta \rho \sigma} \\ &= - (\delta^{\alpha}_{\alpha} \delta^{\beta \mu \nu}_{\beta \rho \sigma} - \delta^{\alpha}_{\beta} \delta^{\beta \mu \nu}_{\alpha \rho \sigma} + \delta^{\alpha}_{\rho} \delta^{\beta \mu \nu}_{\alpha \beta \sigma} - \delta^{\alpha}_{\sigma}\delta^{\beta \mu \nu}_{\alpha \beta \rho}) \\ &= - (4\delta^{\beta \mu \nu}_{\beta \rho \sigma} - \delta^{\alpha \mu \nu}_{\alpha \rho \sigma} + \delta^{\beta \mu \nu}_{\rho \beta \sigma} - \delta^{\beta \mu \nu}_{\sigma \beta \rho}) \\ &= - [4(\delta^{\beta}_{\beta} \delta^{\mu \nu}_{\rho \sigma} - \delta^{\beta}_{\rho} \delta^{\mu \nu}_{\beta \sigma} + \delta^{\beta}_{\sigma}\delta^{\mu \nu}_{\beta \rho}) - ( \delta^{\alpha }_{\alpha} \delta^{\mu \nu}_{\rho \sigma} - \delta^{\alpha}_{\rho} \delta^{\mu \nu}_{\alpha \sigma} + \delta^{\alpha}_{\sigma} \delta^{\mu \nu}_{\alpha \rho}) - \delta^{\beta \mu \nu}_{\beta \rho \sigma} + \delta^{\beta \mu \nu}_{\beta \sigma \rho}] \\ &= - [4(4\delta^{\mu \nu}_{\rho \sigma} - \delta^{\mu \nu}_{\rho \sigma} + \delta^{\mu \nu}_{\sigma \rho}) - ( 4 \delta^{\mu \nu}_{\rho \sigma} - \delta^{\mu \nu}_{\rho \sigma} + \delta^{\mu \nu}_{\sigma \rho}) - \delta^{\beta \mu \nu}_{\beta \rho \sigma} + \delta^{\beta \mu \nu}_{\beta \sigma \rho}] \\ &= - [4(2\delta^{\mu \nu}_{\rho \sigma} ) - 2 \delta^{\mu \nu}_{\rho \sigma} - 2 \delta^{\mu \nu}_{\rho \sigma} + 2 \delta^{\mu \nu}_{\sigma \rho}] \\ &= - [8 \delta^{\mu \nu}_{\rho \sigma} - 6 \delta^{\mu \nu}_{\rho \sigma} ] \\ &= - 2 \delta^{\mu \nu}_{\rho \sigma} \\ &= - 2 (\delta^{\mu}_{\rho} \delta^{\nu}_{\sigma} - \delta^{\mu}_{\sigma} \delta^{\nu}_{\rho}). \end{align*} Similarly, in $d$ dimensions we have $$\varepsilon^{\mu_1 .. \mu_d} \varepsilon_{\mu_1 .. \mu_d} = - d!$$ From this one immediately sees that $$ \varepsilon^{\mu_1 .. \mu_d} \varepsilon_{\nu_1 .. \mu_d} = - \delta^{\mu_1 .. \mu_d}_{\nu_1 .. \nu_d} $$ and so contractions obey identities like $$\varepsilon^{\mu_1 \ldots \mu_r \mu_{r+1} .. \mu_d} \varepsilon_{\mu_1 .. \mu_r \nu_{r+1} \ldots \nu_d} = - A \delta^{\mu_{r+1} .. \mu_d}_{\nu_{r+1} .. \nu_d}$$ must hold in $d$ dimensions, where $A$ can be fixed by expanding $$\varepsilon^{\mu_1 \ldots \mu_r \mu_{r+1} .. \mu_d} \varepsilon_{\mu_1 .. \mu_r \nu_{r+1} \ldots \nu_d} = - \delta^{\mu_1 .. \mu_r \mu_{r+1} .. \mu_d}_{\mu_1 .. \mu_r \nu_{r+1} .. \nu_d}$$ one step at a time as in the example above, and obviously $A = r!$ should hold so that $A = - d!$ when $r = d$, as can be proven by induction.