Statistical Mechanics – Is the N Factorial in the Partition Function for N Indistinguishable Particles an Approximation?

identical-particlesstatistical mechanics

I suspect that the $N$ factorial in the partition function for N indistinguishable particles
$$ Z = \frac{ Z_0^N } {N!} $$
is an approximation. Please someone correct me if I am wrong and why or why not. Thanks.


A simple case:

each particle has two states with energy $0$ and $E$. The partition function for a single particle is
$$ Z_0 = 1 + e^{- \beta E} . $$
If there are only two particles, there is the total partition function
$$
Z = \frac{ Z_0^2 } {2}.
$$
But regarding the whole system consisting of these two particles, we can also write
$$
Z = 1 + e^{- \beta E} + e^{-2 \beta E} .
$$
And it is certain that
$$
\frac{ Z_0^2 } {2} \neq 1 + e^{- \beta E} + e^{-2 \beta E}
$$

Best Answer

The factorial factor $1/N!$ is exact but does not apply to all statistics.

Consider a two level system and let us call $\xi_i$ the grand-canonical partition function for the energy level $i$ ($i=0$ or $1$) and $z=\mathrm e^{\beta\mu}$ the fugacity. Keep in mind that $\xi_i$ is the partition function for a given energy level.

Classical particles are independent, indistinguishable, $\xi_i$ is computed as a usual partition function for undistinguishable particles. Here we divide by the symmetry $p!$ because the particles are undistinguishable and therefore the order in which we could label them should not matter. $$\xi_i^{\text{classical}}=\sum_{p=0}^\infty \frac1{p!}z^p \mathrm e^{-p\beta E_i}=1+z\mathrm e^{-\beta E_i}+\frac{z^2}{2}\mathrm e^{-2\beta E_i}+\cdots=\exp\left(z\mathrm e^{-\beta E_i}\right).$$ For quantum particles, the sum runs over the number of particles which can occupy the energy level. There is no division by $p!$ because the quantum states already are (anti)-symmetric; for instance the quantum state where there is one fermion in each level is $\frac1{\sqrt2}\left(\left|01\right\rangle-\left|10\right\rangle\right)$. $$ \xi_i^{\text{fermions}}=\sum_{p=0}^1z^p\mathrm e^{-p\beta E_i}=1+z\mathrm e^{-\beta E_i}$$ $$ \xi_i^{\text{bosons}}=\sum_{p=0}^\infty z^p\mathrm e^{-p\beta E_i}=\frac1{1-z\mathrm e^{-\beta E_i}}$$ The grand-canonical partition functions are $$ \mathcal Z^{\text{classical}}=\xi_0^{\text{classical}}\xi_1^{\text{classical}}=\mathrm e^{z\left(1+\mathrm e^{-\beta E}\right)} =\mathrm e^{zZ_1}=1+zZ_1+\frac{z^2}2Z_1^2+\cdots$$ $$\mathcal Z^{\text{fermions}}=\xi_0^{\text{fermions}}\xi_1^{\text{fermions}}=(1+z)\left(1+z\mathrm e^{-\beta E}\right)=1+zZ_1+z^2\mathrm e^{-\beta E}$$ $$\mathcal Z^{\text{bosons}}=\xi_0^{\text{bosons}}\xi_1^{\text{bosons}}= \frac1{1-z}\frac1{1-z\mathrm e^{-\beta E}}=1+zZ_1-z^2\mathrm e^{-\beta E}+z^2Z_1^2+\cdots$$ with $Z_1=1+\mathrm e^{-\beta E}$ is the one-particle partition function.

Now looking at the coefficient $z^2$ in $\mathcal Z$ gives the two-particle canonical partition function $Z_2$. We have $$ Z_2^{\text{classical}}=\frac{1}{2}Z_1^2,\quad Z_2^{\text{fermions}}=\mathrm e^{-\beta E},\quad Z_2^{\text{bosons}}=1+\mathrm e^{-\beta E}+\mathrm e^{-2\beta E}.$$ In none of these case was it necessary to make an approximation. Undistinguishability in the quantum cases is for quantum states, not for particles.

Remark The difference between $Z_2^{\text{classical}}$ and $Z_2^{\text{bosons}}$ is evidence for the fact that the bosons and the classical particles have a difference. Indeed, classical particles have no correlations, which is expressed by the fact $Z_2\propto Z_1^2$, whereas bosons have correlations: compared to the uncorrelated classical particles, the relative weight of the states where the particles are both at the same energy level is larger: bosons prefer to be in the same state. (Fermions avoid being at the same energ level and classical particles don't care.)