[Physics] Is Mach’s Principle Wrong

general-relativityinertial-framesmachs-principle

This question was prompted by another question about a paper by Woodward (not mine). IMO Mach's principle
is very problematic (?wrong) thinking. Mach was obviously influenced by Leibniz. Empty space solutions in GR would result in a Minkowski metric and would suggest no inertia.
Mach's principle seems incompatible with GR. Gravitational waves could also be a problem.
I had thought that papers like one by Wolfgang Rindler had more or less marginalised the Mach Principle, but I see lots of Internet discussion of it. Is it correct? Wrong? Is there evidence? (frame dragging experiments)?

Let's use this definition from ScienceWorld.Wolfram.com:

In his book The Science of Mechanics (1893), Ernst Mach put forth the idea that it did not make sense to speak of the acceleration of a mass relative to absolute space. Rather, one would do better to speak of acceleration relative to the distant stars. What this implies is that the inertia of a body here is influenced by matter far distant.

Best Answer

Mach's principle has influenced Einstein but the final formulation of general relativity as of 1916 clearly invalidates Mach's conjecture. According to Mach's principle, motion - including accelerating and rotating one - may only be defined relatively to other objects. That would imply that there can't exist any gravitational waves.

However, general relativity predicts and experiments confirm that gravitational waves do exist: the relevant observations were awarded by the 1993 physics Nobel prize, too. The waves are vibrations of the space itself. It means that the metric tensor remembers the information about the geometry - and curvature at each point, even in the empty space, something that Mach's principle specifically wanted to prohibit.

Moreover, the perceptions and other effects of acceleration were supposed to be determined by comparisons with distant objects. This simple fact itself violates locality that has become important already in special relativity, and was simply inherited by general relativity.

If you care about history, the new cold relationship is mutual: much like general relativity rejected Mach's principle, Mach rejected general relativity - and already special relativity, in fact. ;-) If you care about sociology, there's been a poll among physicists active in relativity, and a vast majority of them would also say that Mach's principle is invalidated by general relativity.

Some people sometimes say that some effects predicted by general relativity, such as frame-dragging, are "Machian" in character. I think it is very misleading because it tries to make the listeners think that Mach's principle may be made compatible with the observations. It's very questionable what Mach's principle would predict about frame-dragging because Mach's principle has never become any viable candidate for a physical theory. But the idea that frame-dragging is Machian is more ideology and hype than a valid observation. Despite the vagueness about such very detailed effects, Mach's principle has said enough for us to be sure that it's incorrect in all of its forms.

Well, there's a lot of discussion on the Internet about long-dead ideas in physics - and maybe mostly about them. However, the Internet has nothing to do with the current state of physics.