Electrostatics – Understanding Infinitely Charged Wire and Differential Form of Gauss’ Law

electrostaticsgauss-lawhomework-and-exercisespotential

I have tried calculating the potential of a charged wire the direct way. If lambda is the charge density of the wire, then I get

$$\phi(r) = \frac{\lambda}{4 \pi \epsilon_0 r} \int_{-\infty}^\infty \frac{1}{(1+z^2/r^2)^{1/2}} dz.$$ But this comes to $+\infty$ unless I am doing the calculation wrong. Why doesn't this work the direct way?

Also, is it possible to calculate the potential of a charged wire using Gauss' differential law? What about in the case of an infinite charged sheet? Or does Gauss' differential law only apply to charged volumes?

Best Answer

  1. The infinitely long wire has an infinite charge $$Q~=~\lambda \int_{-\infty}^{\infty} \! dz ~=~ \infty,\tag{1}$$ and EM has an infinite range, so one shouldn't be surprised to learn that the result $$\phi(r)~=~ \frac{\lambda}{4 \pi \epsilon_0} \int_{-\infty}^{\infty} \frac{dz}{\sqrt{z^2+r^2}} ~=~ \frac{\lambda}{4 \pi \epsilon_0} \left[ {\rm arsinh} \left(\frac{z}{r}\right)\right]_{z=-\infty}^{z=\infty} ~=~\infty \tag{2}$$ is infinite. (From a mathematical point of view, the integrand fails to be integrable wrt. the $z$ variable.) A similar situation happens often in Newtonian gravity if the total mass is infinite, see e.g. this question.

  2. However, as Pygmalion mentions in his answer, the electric field $\vec{E}$ is well-defined for $r\neq 0$, and the corresponding integrand is integrable wrt. the $z$ variable. E.g. the radial component (in cylindrical coordinates) reads $$E_r(r)~=~ \frac{\lambda r}{4 \pi \epsilon_0} \int_{-\infty}^{\infty} \frac{dz}{(z^2+r^2)^{3/2}} ~=~ \frac{\lambda r}{4 \pi \epsilon_0} \left[ \frac{z}{r^2\sqrt{z^2+r^2}}\right]_{z=-\infty}^{z=\infty} ~=~\frac{\lambda}{2\pi\epsilon_0 r}\tag{3} $$ for $r\neq 0$.

  3. Alternatively, apply Gauss' law $$d\Phi_{E} ~=~\frac{dQ}{\epsilon_0},\tag{4}$$ using an infinitesimally thin disk perpendicular to the wire. The disk has radius $r$ and thickness $dz$. The total electric flux $d\Phi_{E}$ out of the disk is $$ E_r \cdot 2\pi r dz ~=~ \frac{\lambda dz}{\epsilon_0},\tag{5}$$ which leads to the same electric field $E_r$.

  4. This electric field $\vec{E}=-\vec{\nabla}\phi$ is consistent with a potential of the form $$\phi(r) ~=~-\frac{\lambda}{2\pi\epsilon_0}\ln r \qquad \text{for}\qquad r\neq 0.\tag{6}$$