[Physics] In the famous Einstein’s Photoelectric effect, why does the intensity of light not raise the kinetic energy of the emitted electrons

photoelectric-effectquantum mechanics

The work function of any metal is no doubt constant for it is related to electromagnetic attraction between electrons and protons. However on increasing the intensity of any light source the kinetic energy of the emitting electrons must increase, mustn't it? Let us assume there is only 1 electron in a metal surface. Let hf be the energy required to expel it out with a velocity 'v'. Again let us increase the intensity of the source keeping frequency constant. Now ' hf ' will change to 'nhf' where n = no. of photons striking on electron at a same time. Since work function is constant the only variable must be 'v' letting it increase its K.E. This clearly shows Kinetic energy of emitting electrons is directly proportional to the intensity of light source. If kinetic energy depends upon the intensity, stopping potential for a particular frequency of light for a particular metal is a variable quantity. It is true that on increasing the intensity the no.of photo electrons will increase. But what if the no.of electrons in a metallic plate is constant. Suppose I have only two electrons in a metal, on increasing intensity i.e on increasing the no.of photons , the no.of photons colliding from different sides simultaneously may increase . So, K.E of emitted electron must increase on increasing intensity, mustn't it? But experimental data doesn't show this. What is wrong? Help me out

Best Answer

In general you're right - an electron being subject to interactions with more than a single photon may have a higher kinetic energy. However, in the vast majority of photoelectric setups you will observe that kinetic energy is independent of light's intensity.

The appropriate framework for this discussion is this of probability theory:

  • Each electron has an effective cross section of interaction (each electron has some "size"). An average cross section of interaction may be defined.
  • Electrons are distributed in some manner on the specimen. An average density of electrons per unit area may be defined.
  • After an interaction with photon, each electron has some characteristic time during which a second interaction is possible (this time is very hard to estimate; in fact, I don't know if there are analytical methods for performing this estimation). An average characteristic time may be defined.
  • The number of photons per unit area per unit time depends on the intensity of the light. An average number of photons per unit area per unit time may be defined.

Now, you should ask the following question: "given the effective cross-section of interaction of electrons, the average number of electrons per unit area, the average characteristic time and the average number of photons per unit area per unit time, what is the probability for an electron to interact with more than one photon?".

The usual answer to the above question is "negligible". This happens, but so rarely that the current due to these electrons is below your measurement error.

However, in high intensity experiments (where the number of photons per unit area per unit time is enormous), multi-interaction-electrons were observed. See this for example.

Analogy:

The best analogy I can think of is this of rain. You may think about individual photons as drops of rain, about individual electrons as people in the crowd (each of whom has an effective cross-section of interaction which depends on how fat the person is :)), and about the characteristic time as of time it takes to open an umbrella over the head.

Now, if the rain is weak (usually when it just starts), each person in the crowd is hit by a single first drop. He takes his umbrella out of his bag and opens it above his head. If he does this sufficiently fast (short characteristic time), he will not be hit by more drops.

However, there are cases when the rain has no "few drops per minute" phase - it almost instantly starts and is very intensive. In this case, no matter how fast the people open their umbrellas, they will be hit by many drops.

enter image description here

Related Question