[Physics] In Feynman’s path integral formulation, what do faster-than-light paths mean

causalityfaster-than-lightpath-integralquantum-electrodynamicsvirtual-particles

In Brian Greene's book "The elegant Universe", he talks about the double slit experiment and Feynman's interpretation of Quantum Mechanics. According to the book, Feynman said that one vaild interpretation is that on its way from the emitter to the photoscreen, the photon actually takes every possible path. Greene actually says that some paths include a trip to the Andromeda galaxy and back, as a photon takes (as said before) $\textit{every}$ possible path.

Now if this were really the case and we measure the time between the emission of a photon and its impact on the photoscreen, doesn't this mean that some photons would actually travel with a velocity far greater than the speed of light? If a photon actually travelled to Andromeda and back, there is no way it could arrive at the photoscreen in just a fraction of a second as is observed during experiment….

Best Answer

The paths of the Feynman path integral are not actually taken. The phrase "takes every possible path" is a mangled statement of the mathematical instruction to take the integral of $\exp(-\mathrm{i}S)$ over all possible paths for the action $S$ to get the probability amplitude of something happening. It is a fact of quantum mechanics that this integral computes the correct quantum mechanical amplitude, but the formalism of quantum mechanics never says anything about the particle "taking" these paths, which is in particular absurd because quantum objects are not point particles that have a well-defined path in the first place. So, well, you can say that it "takes" every possible path as long as you don't literally imagine a point particle zipping along each path. Which is what "taking" a path usually means. Which is why this figure of speech does not actually convey any physical insight.

The physical insight lies in understanding how the path integral reproduces the correct quantum mechanical amplitude, which cannot be done on the level of such crude heuristic statements based on classical notions of "path" and "particle". There is no path a quantum particle takes unless you continually track it, and then you'll get a perfectly ordinary classical path (see, for instance, the perfectly normal paths in bubble chambers, where the continual interaction with the bubble chamber effectively tracks the particle).

Related Question