[Physics] How to derive the Klein-Nishina formula from the Dirac equation

dirac-equationphotonsquantum mechanicsscattering-cross-sectionspecial-relativity

I'm looking for the simplest demonstration of the Klein-Nishina formula, from the Dirac equation without the field described as a quantum operator:

https://en.wikipedia.org/wiki/Klein%E2%80%93Nishina_formula

Consider $\psi$ as a "classical" spinor field (not a quantum operator), satisfying the Dirac equation :
$$\tag{1}
\gamma^a \partial_a\psi + i m \psi = 0.
$$
How can we deduce the following Klein-Nishina formula?
$$\tag{2}
\frac{d\sigma}{d\Omega} = \frac{r_{\mathrm{c}}^2}{2} \Big( P(E, \vartheta) + \frac{1}{P(E, \vartheta)} – \sin^2 \vartheta \Big) P^2(E, \vartheta),
$$
where $r_{\mathrm{c}}$ is the classical electron radius and
$$\tag{3}
P(E, \vartheta) = \frac{1}{1 + \frac{E}{m c^2}(1 – \cos{\vartheta})}.
$$
The formula (2) was derived in 1928 to the lowest non-trivial order, after Dirac published his equation and before QFT was formulated (i.e. QED), so I'm expecting that the derivation isn't very complicated.

Best Answer

In the center of mass frame, let $p_1$ be the inbound photon, $p_2$ the inbound electron, $p_3$ the scattered photon, $p_4$ the scattered electron.

\begin{equation*} p_1=\begin{pmatrix}\omega\\0\\0\\ \omega\end{pmatrix} \qquad p_2=\begin{pmatrix}E\\0\\0\\-\omega\end{pmatrix} \qquad p_3=\begin{pmatrix} \omega\\ \omega\sin\theta\cos\phi\\ \omega\sin\theta\sin\phi\\ \omega\cos\theta \end{pmatrix} \qquad p_4=\begin{pmatrix} E\\ -\omega\sin\theta\cos\phi\\ -\omega\sin\theta\sin\phi\\ -\omega\cos\theta \end{pmatrix} \end{equation*}

where $E=\sqrt{\omega^2+m^2}$.

It is easy to show that

\begin{equation} \langle|\mathcal{M}|^2\rangle = \frac{e^4}{4} \left( \frac{f_{11}}{(s-m^2)^2} +\frac{f_{12}}{(s-m^2)(u-m^2)} +\frac{f_{12}^*}{(s-m^2)(u-m^2)} +\frac{f_{22}}{(u-m^2)^2} \right) \end{equation}

where

\begin{equation} \begin{aligned} f_{11}&=-8 s u + 24 s m^2 + 8 u m^2 + 8 m^4 \\ f_{12}&=8 s m^2 + 8 u m^2 + 16 m^4 \\ f_{22}&=-8 s u + 8 s m^2 + 24 u m^2 + 8 m^4 \end{aligned} \end{equation}

for the Mandelstam variables $s=(p_1+p_2)^2$, $t=(p_1-p_3)^2$, $u=(p_1-p_4)^2$.

Next, apply a Lorentz boost to go from the center of mass frame to the lab frame in which the electron is at rest.

\begin{equation*} \Lambda= \begin{pmatrix} E/m & 0 & 0 & \omega/m\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ \omega/m & 0 & 0 & E/m \end{pmatrix}, \qquad \Lambda p_2=\begin{pmatrix}m \\ 0 \\ 0 \\ 0\end{pmatrix} \end{equation*}

The Mandelstam variables are invariant under a boost. \begin{equation} \begin{aligned} s&=(p_1+p_2)^2=(\Lambda p_1+\Lambda p_2)^2 \\ t&=(p_1-p_3)^2=(\Lambda p_1-\Lambda p_3)^2 \\ u&=(p_1-p_4)^2=(\Lambda p_1-\Lambda p_4)^2 \end{aligned} \end{equation}

In the lab frame, let $\omega_L$ be the angular frequency of the incident photon and let $\omega_L'$ be the angular frequency of the scattered photon. \begin{equation} \begin{aligned} \omega_L&=\Lambda p_1\cdot(1,0,0,0)=\frac{\omega^2}{m}+\frac{\omega E}{m} \\ \omega_L'&=\Lambda p_3\cdot(1,0,0,0)=\frac{\omega^2\cos\theta}{m}+\frac{\omega E}{m} \end{aligned} \end{equation}

It follows that \begin{equation} \begin{aligned} s&=(p_1+p_2)^2=2m\omega_L+m^2 \\ t&=(p_1-p_3)^2=2m(\omega_L' - \omega_L) \\ u&=(p_1-p_4)^2=-2 m \omega_L' + m^2 \end{aligned} \end{equation}

Compute $\langle|\mathcal{M}|^2\rangle$ from $s$, $t$, and $u$ that involve $\omega_L$ and $\omega_L'$. \begin{equation*} \langle|\mathcal{M}|^2\rangle= 2e^4\left( \frac{\omega_L}{\omega_L'}+\frac{\omega_L'}{\omega_L} +\left(\frac{m}{\omega_L}-\frac{m}{\omega_L'}+1\right)^2-1 \right) \end{equation*}

From the Compton formula \begin{equation*} \frac{1}{\omega_L'}-\frac{1}{\omega_L}=\frac{1-\cos\theta_L}{m} \end{equation*}

we have \begin{equation*} \cos\theta_L=\frac{m}{\omega_L}-\frac{m}{\omega_L'}+1 \end{equation*}

Hence \begin{equation*} \langle|\mathcal{M}|^2\rangle= 2e^4\left( \frac{\omega_L}{\omega_L'}+\frac{\omega_L'}{\omega_L}+\cos^2\theta_L-1 \right) \end{equation*}

The differential cross section for Compton scattering is \begin{equation*} \frac{d\sigma}{d\Omega}\propto \left(\frac{\omega_L'}{\omega_L}\right)^2\langle|\mathcal{M}|^2\rangle \end{equation*}