Quantum Mechanics – How to Derive the Angular Momentum Operator for 3D Harmonic Oscillator?

harmonic-oscillatorhomework-and-exercisesoperatorsquantum mechanics

In Angular momentum for 3D harmonic oscillator in two different bases Robin Ekman comes with the expression to $L_i$. I can't see how $$\epsilon_{ijk}(a_j^\dagger a_k^\dagger – a_j a_k) = 0$$ when developing the $L_i$ for isotropic 3D harmonic oscillator
$$L_i = i \frac{\hbar}{2} \epsilon_{ijk}(a_j + a_j^\dagger) (a_k^\dagger – a_k) = i \frac{\hbar}{2} \epsilon_{ijk}( a_j a_k^\dagger – a_j a_k + a_j^\dagger a_k^\dagger – a_j^\dagger a_k) = -i\hbar\epsilon_{ijk} a^\dagger_j a_k.$$

I see that $$\left(a_j^\dagger a_k^\dagger\right)^\dagger = a_k a_j = a_j a_k,$$ which means $a_ja_k$ isn't hermitian for $i \ne j$ how does $$\epsilon_{ijk}(a_j^\dagger a_k^\dagger – a_j a_k)$$ go to $0$?

Best Answer

First, you need to understand $a_i$ is a bosonic operator satisfying the bosonic commutation relation $[a_i,a_j]=0$, meaning that $a_ia_j=a_ja_i$. Now we show that $\epsilon_{ijk}a_ja_k=0$. Because if you fix $i=1$, then $$\epsilon_{1jk}a_ja_k=\epsilon_{123}a_2a_3+\epsilon_{132}a_3a_2=a_2a_3-a_3a_2=0.$$ For other choice of $i$, the proof is similar. Then $\epsilon_{ijk}a_ja_k=0$ implies $\epsilon_{ijk}a_j^\dagger a_k^\dagger=0$ by Hermitian conjugating both sides of the equation. Because both $\epsilon_{ijk}a_ja_k$ and $\epsilon_{ijk}a_j^\dagger a_k^\dagger$ are zero, so their difference is also zero.

Related Question