[Physics] Heisenberg’s equation of motion for harmonic oscillator

harmonic-oscillatorhomework-and-exercisesquantum mechanics

I am trying to solve Heisenberg's equation of motion for the time evolution of the raising and lowering operator $b_{H}$ and $b^+_{H}$for a Harmonic oscillator. In the question it assume the Hamiltonian
$$
h=\frac{p^2}{2m}+\frac{1}{2}m\omega^2x^2
$$
has been simplified using
$$P=\frac{p}{(\hbar\omega m)^\frac{1}{2}} \quad Q=x \left( \frac{m\omega}{\hbar} \right)^\frac{1}{2} \quad H=\frac{h}{\hbar\omega}$$
into
$$
H=\frac{1}{2}(P^2+Q^2)
$$
so that
$$b=\frac{Q+iP}{\sqrt{2}}, \quad b^+=\frac{Q-iP}{\sqrt{2}}
$$

I am try to compute $\partial b_{H} / \partial t$ as
$$\frac{i}{\hbar}[H,b]_{H}$$
then I do $$\frac{i}{\hbar}[H,b]_{H}=-\frac{i}{\hbar}[b,H]_{H}=-\frac{i}{\hbar}[b,\frac{1}{2}(P^2+Q^2)]_{H}=-\frac{i}{\hbar}[b,\frac{1}{2}(P^2)]_{H}+\frac{i}{\hbar}[b,\frac{1}{2}(Q^2)]_{H}$$
Then I plut $b_{H}=\frac{Q_{H}+iP_{H}}{\sqrt{2}}$ into
$$
-\frac{i}{\hbar}[b,\frac{1}{2}(P^2)]_{H}+\frac{i}{\hbar}[b,\frac{1}{2}(Q^2)]_{H}
$$

I am wondering whether or not my process to fin $\partial b_{H} / \partial t$ is correct.

Best Answer

It is almost correct, but you're missing a factor of $\hbar\omega$. Note that in your equation $\partial_t b_H = \frac{\mathrm i}{\hbar} [H,b]_H$, the units do not match (since $H$ and $b$ are dimensionless). Correct is $$ \partial_t b_H = \frac{\mathrm i}{\hbar} [h,b]_H = \mathrm i\omega\, [H,b]_H . $$

Otherwise, just one hint for making your life easier: $$ [H,b]_H = [H_H,b_H] = [H, b_H] . $$