[Physics] Harmonic Oscillator Energy to Momentum Expectation Value

eigenvaluehomework-and-exercisesmomentumoperatorsquantum mechanics

If we are given a wave function written in terms of harmonic oscillator energy eigenfunctions how can we determine the maximum possible momentum expectation value? It's a combination of the first two energy states, weighted with equal probability – why is there even a range of possible momentum expectation values?

Best Answer

Writing $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$, where $|0\rangle$a and $|1\rangle$ are the first energy eigenvectors, and $\alpha$ and $\beta$ are complex, and with $\hat P = i \sqrt{\frac{m\omega\hbar}{2}} (a^\dagger-a)$, we one gets :

$\langle \psi|\hat P|\psi\rangle = i \sqrt{\frac{m\omega\hbar}{2}}(\alpha^*\langle 0| + \beta^*\langle 1|)(\alpha|1\rangle + \beta(\sqrt{2}|2\rangle -|0\rangle) \\=i \sqrt{\frac{m\omega\hbar}{2}}(\beta^*\alpha -\alpha^*\beta)$.

So, finally, $\langle\hat P\rangle = \frac{\langle \psi|\hat P|\psi\rangle}{\langle \psi|\psi\rangle} = i \sqrt{\frac{m\omega\hbar}{2}} \frac{\beta^*\alpha -\alpha^*\beta}{|\alpha|^2 + |\beta|^2}$

The maximum of $|\frac{\beta^*\alpha -\alpha^*\beta}{|\alpha|^2+ |\beta|^2}|$ is $1$, and is reached, for instance for $\alpha$ real and $\beta = \pm i\alpha$ pure imaginary (or vice-versa). For these values, we have $\langle\hat P\rangle = \pm \sqrt{\frac{m\omega\hbar}{2}}$

The minimum is reached for $\alpha$ and $\beta$ both real, or both pure imaginary, in these cases, $\langle\hat P\rangle = 0$