[Physics] Ground state of three non-interacting fermions at an infinite well

fermionsidentical-particlespauli-exclusion-principlequantum mechanicswavefunction

In Zettili's Quantum Mechanics, page 477, he wants to determine the energy and wave function of the ground state of three non-interacting identical spin 1/2 particles confined in a one-dimensional infinite potential well of length a. He states that one possible configuration of the ground state wave function is:
$$
\psi^{(0)}(x_1,x_2,x_3)
=
\frac{1}{\sqrt{3!}}
\begin{vmatrix}
\psi_1(x_1) |{+}\rangle & \psi_1(x_2) |{-}\rangle & \psi_1(x_3) |{+}\rangle
\\
\psi_1(x_1) |{-}\rangle & \psi_1(x_2) |{+}\rangle & \psi_1(x_3) |{+}\rangle
\\
\psi_2(x_1) |{+}\rangle & \psi_2(x_2) |{+}\rangle & \psi_2(x_3) |{-}\rangle
\\
\end{vmatrix}
$$

But this shows that there are particles in the same state, despite being fermions. Is there something wrong here?

Best Answer

As mentioned in the comments, the wavefunction as posed is symmetric in the exchange between particles 1 and 2. This can be seen directly from the wavefunction, where to avoid confusion it is easier to take explicit spin components: \begin{align} \psi^{(0)}_{i_2,i_1,i_3}(x_2,x_1,x_3) &= \frac{1}{\sqrt{3!}} \begin{vmatrix} \psi_1(x_2) \langle i_2|{+}\rangle & \psi_1(x_1) \langle i_1|{-}\rangle & \psi_1(x_3) \langle i_3|{+}\rangle \\ \psi_1(x_2) \langle i_2|{-}\rangle & \psi_1(x_1) \langle i_1|{+}\rangle & \psi_1(x_3) \langle i_3|{+}\rangle \\ \psi_2(x_2) \langle i_2|{+}\rangle & \psi_2(x_1) \langle i_1|{+}\rangle & \psi_2(x_3) \langle i_3|{-}\rangle \\ \end{vmatrix} \\& \\ & = \frac{-1}{\sqrt{3!}} \begin{vmatrix} \psi_1(x_1) \langle i_1|{-}\rangle & \psi_1(x_2) \langle i_2|{+}\rangle & \psi_1(x_3) \langle i_3|{+}\rangle \\ \psi_1(x_1) \langle i_1|{+}\rangle & \psi_1(x_2) \langle i_2|{-}\rangle & \psi_1(x_3) \langle i_3|{+}\rangle \\ \psi_2(x_1) \langle i_1|{+}\rangle & \psi_2(x_2) \langle i_2|{+}\rangle & \psi_2(x_3) \langle i_3|{-}\rangle \\ \end{vmatrix} \\& \\ & = \frac{+1}{\sqrt{3!}} \begin{vmatrix} \psi_1(x_1) \langle i_1|{+}\rangle & \psi_1(x_2) \langle i_2|{-}\rangle & \psi_1(x_3) \langle i_3|{+}\rangle \\ \psi_1(x_1) \langle i_1|{-}\rangle & \psi_1(x_2) \langle i_2|{+}\rangle & \psi_1(x_3) \langle i_3|{+}\rangle \\ \psi_2(x_1) \langle i_1|{+}\rangle & \psi_2(x_2) \langle i_2|{+}\rangle & \psi_2(x_3) \langle i_3|{-}\rangle \\ \end{vmatrix} \\& \\ & = + \psi^{(0)}_{i_1,i_2,i_3}(x_1,x_2,x_3) \end{align}

Because of this symmetry under exchange, the wavefunction as written is not a suitable state for identical fermions.