Fourier Transform – Applying Fourier Transformation to the Klein Gordon Equation

fourier transformklein-gordon-equation

Starting with the Klein Gordon in position space,
\begin{align*}
\left(\frac{\partial^2}{\partial t^2} – \nabla^2+m^2\right)\phi(\mathbf{x},t) = 0
\end{align*}
And using the Fourier Transform: $\displaystyle\phi(\mathbf{x},t) = \int \frac{d^3p}{(2\pi)^3}e^{i \mathbf{p} \cdot\mathbf{x}}\phi(\mathbf{p},t)$:
\begin{align*}
\int \frac{d^3p}{(2\pi)^3}\left(\frac{\partial^2}{\partial t^2} – \nabla^2+m^2\right)e^{i \mathbf{p} \cdot\mathbf{x}}\phi(\mathbf{p},t)&=0 \\
\int \frac{d^3p}{(2\pi)^3}e^{i \mathbf{p} \cdot\mathbf{x}}\left(\frac{\partial^2}{\partial t^2} +|\mathbf{p}|^2+m^2\right)\phi(\mathbf{p},t)&=0
\end{align*}
Now I don't understand why we are able to get rid of the integral, to be left with \begin{align*}
\left(\frac{\partial^2}{\partial t^2} +|\mathbf{p}|^2+m^2\right)\phi(\mathbf{p},t)=0
\end{align*}

Best Answer

The functions $e^{i \bf p \cdot \bf x}$ as functions of $\bf x$ are linearly independent for different $\bf p$'s, hence every coefficient in the linear superposition (that is, in the integral) must be zero.

Related Question